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ABSTRACT

Wide-area distributed applications are challenging toudelmp-
timize, and maintain. We present Wide-Area Project 5 (WAP5)
which aims to make these tasks easier by exposing the cansal s
ture of communication within an application and by exposileg
lays that imply bottlenecks. These bottlenecks might no¢iatise
be obvious, with or without the application’s source codeeviR
ous research projects have presented algorithms to resonap-
plication structure and the corresponding timing inforimatrom
black-box message traces of local-area systems. In thisr peg
present (1) a new algorithm for reconstructing applicasvacture
in both local- and wide-area distributed systems, (2) arastfuc-
ture for gathering application traces in PlanetLab, andb(8)ex-
periences tracing and analyzing three systems: CoDeeN airad, C
two content-distribution networks in PlanetLab; and Sagrpan
enterprise-scale incident-monitoring system.

Categories and Subject Descriptors:D.2.5[Software Engineer-
ing]: Testing and Debugging-#istributed debugging, testing tools

General terms: Algorithms, Performance, Measurement

Keywords: Performance debugging, black box systems, distributed

systems, performance analysis

1. INTRODUCTION

Wide-area distributed systems are difficult to build andlolep
because traditional debugging tools do not scale acrostpheul
processes, machines, and administrative domains. Cothpare
local-area distributed systems, wide-area distributestesys in-
troduce new sources of delays and failures, including netia
tency, limited bandwidth, node unreliability, and parbfiEogram-
ming. Furthermore, the sheer size of a wide-area system afig m
it daunting to find and debug underperforming nodes or to exam
ine event traces. Often, programmers have trouble undelist
the communications structure of a complex distributedesysind
have trouble isolating the specific sources of delays.

In this paper, we present the Wide-Area Project 5 (WAP5) sys-
tem, a set of tools for capturing and analyzing traces of vaid=
distributed applications. The WAPS5 tools aid the developime
optimization, and maintenance of wide-area distributeplieg-
tions by revealing the causal structure and timing of conioain
tion in these systems. They highlight bottlenecks in botitpssing
and communication. By mapping an application’s commuidcat
structure, they highlight when an application’s data flowofes
an unexpected path. By discovering the timing at each shey, t
isolate processing or communication hotspots.
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Figure 1: Example causal path through Coral.

WAP5 Modules

Trace capture

Data captured or inferred

Per-process
socket API traces

Reconciliation
Message trace

with flow IDs

Causal analysis >
Causal paths
< with timing

Figure 2: Schematic of our tool chain.

We are focusing on applications running on PlanetLab [3f; pe
haps the best collection of widely distributed applicasifor which
research access is feasible. In particular, we have applietbols
to the CoDeeN [19] and Coral [7] content-distribution netkeo
(CDNSs). WAPS constructs causal structures, such as thetmwens
for Coral in Figure 1, which matches a path described by Eidgur
in a paper on Coral [7].

Our tool chain consists of four steps, depicted in FigureistF
our dynamically linked interposition library captures anace of
socket-API calls per application process on each particigana-
chine. Second, we reconcile the socket-API traces to foringles
trace with one record per message containing both a sentand a
ceived timestamp. These timestamps reflect the clocks aetiaer
and receiver machines, respectively, and are used to Guanii
compensate for clock skew and to measure network latendsd,Th
we run our causality analysis algorithm on the reconcileddrto
find causal paths through the application, like the one imfd..
Finally, we render the causal paths as trees or timelines.

In the space of tools that analyze application behavior & p
formance debugging, our approach is among the least irvasist
works on the largest scale of systems: wide-area distiibsys-
tems. Other causal-path analysis tools differ in their siweness
or in the scale of systems they target. Our earlier work [hfvin
asProject § targets heterogeneous local-area distributed systems
and is minimally invasive because it works using only nefwor
traces. Magpie [2] and Pinpoint [4] target (mostly) homagmis
local-area distributed systems and require specific ptagowith
the appropriate logging capabilities. In some cases, Rihpdso
requires the ability to change message formats. DPM [1@Efa



single-computer systems using an instrumented kernel.[13jp
supports wide-area systems but requires manual annaagonn-
strumented platform, or both. We discuss related work &rrth
Section 8.
This paper makes the following contributions:
e A new causal-path inference algorithm, timessage-linking

forming the query contacts one host, which contacts a seoand
its behalf, and so on. A recursive lookup may return backugho
each intermediary, or it may return directly along a shdrfoom
the destination node back to the client.

With an iterative DHT, all of the necessary messages foryanal
sis of causal paths starting at a particular node can be rempau

algorithm, that introduces support for wide-area systems. Soméghat node. With a recursive or recursive-shortcut DHT, ahpath

of the new features of linking also make it easier to analyze
local-area systems. We provide a full comparison with our
previous algorithms [1] in Section 5.3.

e Adiscussion of several previously unaddressed problertis wi

causal path analysis, including naming issues, DHT issues,

wide-area network latencies, clock skew, and network ad-
dress translation.
e Results from applying our tools to three real systems, the

CoDeeN and Coral CDNSs running on PlanetLab, and Slurpee,

an enterprise-scale incident-monitoring system.

In the next section, we define the problem we are solving more
explicitly. We then describe the three main tools in our apph,
which perform trace capture, trace reconciliation, andsabpath
analysis over the trace. Finally, we present results frametlsys-
tems.

2. PROBLEM DEFINITION

In this section, we define the problem we are solving. We in-
clude a description of the target applications, discussiosome
distributed hash table (DHT) issues, definitions of our iaotogy
for communication between components, our model of caysali
and several issues related to naming of components.

2.1 Target applications

Our primary goal is to expose the causal structure of comaauni
tion within a distributed application and to quantify botlopessing
delays inside nodes and communication (network) delayshign
paper, we specifically focus on wide-area distributed systéand
other systems) where the network delays are non-negligitle
further focus on PlanetLab applications because we cancgesa
to them easily. However, nothing in our approach requiresutte
of PlanetLab.

We aim to use as little application-specific knowledge asipos
ble and not to change the application. We can handle apiolisat
whose source code is unavailable, whose application-teeskage
formats are unknown, and, in general, withaudriori information
about the design of the application.

Our tools can handle distributed systems whose “nodes” apan
range of granularities ranging from entire computers dawsit-
gle threads, and whose communication paths include varietis
work protocols and intra-host IPC. We aim to support systdras
span multiple implementation frameworks; for example, dtimu
tier application where one tier is J2EE, another is .Net, atidrd
is neither.

analysis requires packet sniffing or instrumentation atyelHT
node. The algorithm presented in this paper handles ak tkirels
of DHT.

DHTSs create an additional “aggregation” problem that weedef
until Section 2.5.1.

2.3 Communications terminology

Networked communication design typically follows a layekes-
chitecture, in which the protocol data units (PDUs) at ongila
might be composed of multiple, partial, or overlapping PQita
lower layer. Sometimes the layer for meaningfully expregsin
application’s causal structure is higher than the layertivwe
can obtain traces. For example, in order to send a 20 KB HTTP-
level response message, a Web server might break it inte@vrit
system call invocations based on an 8 KB buffer. The netwiartks
then breaks these further into 1460-byte TCP segmentshwioic
mally map directly onto IP packets, but which might be fragted
by an intervening router.

We have found it necessary to clearly distinguish betweesr me
sages at different layers. In this paper, we use the fmoketto
refer to an IP or UDP datagram or a TCP segment. Wenuss-
sageto refer to data sent by a single write() system call or resebiv
by a single read(). We refer to a large application-layendfer
that spans multiplenessagess afat message Fat messages re-
quire special handling: we combine adjacent messages irwa flo
into a single large message before beginning causal asalysin-
versely, several sufficiently small application-layertaninay be
packed into a single system call or network packet, in patoc
that allow pipelining. In the systems analyzed here, supkelji-
ing does not occur. In systems where pipelining is presemtaml
chain would see fewer requests than were really sent buid/gailil
find causality.

2.4 Causality model

We consider message A to have caused message B if message A
is received by node X, message B is sent by node X, and the logic
in node X is such that the transmission of B depends on rewpivi
A. In our current work, we assume that every message B isreithe
caused by one incoming message A or is spontaneously gederat
by node X. This assumption includes the case where message A
causes the generation of several mess8ges,, ..., Bn.

An application where one message depends on the arrival of
many messages (e.g., a barrier) does not fit this model oabgus
WAPS5 would attribute the outgoing message to only one—slyba
the final—incoming message. Additionally, if structure ionibg

We currently assume the use of unicast communications and weof a causal path pattern depends on application data insitesa

assume that communication within an application takes onen f
of messages. It might be possible to extend this work to aealy
multicast communications.

2.2 DHT issues

Several interesting distributed applications are baseBldms.
Therefore, we developed some techniques specifically fudlhrey
DHT-based applications.

DHTs perform lookups either iteratively, recursively, ecur-
sively with a shortcut response [5]. In an iterative lookdpe
node performing the query contacts several remote hostséily
O(lgn) for systems witm total hosts) sequentially, and each pro-
vides a referral to the next. In a recursive lookup, the nogle p

sage, WAPS will view each variation as a distinct path patterd
will not detect any correlation between the inferred pastances
and the contents of messages.

We cannot currently handle causality that involves asyorotus
timers as triggers; asynchronous events appear to be spous
rather than related to earlier events. This restrictionrtmadeen a
problem for the applications we analyzed for this paper. We a
cannot detect that a node is delayed because it is waitiranfather
node to release a lock.

2.5 Naming issues

Our trace-based approach to analyzing distributed syseams
poses the need for multiple layers of haming and for vari@men



translations. Clear definitions of the meanings of varioames
simplify the design and explanation of our algorithms arslilts.
They also help us define how to convert between or to match vari
ous names.

Causal path analysis involves two categories of named thjec
computational nodes and communication flow endpoints. Blode
might be named using hostnames, process IDs, or at finersgrain
Endpoints might be named using IP addresses, perhaps ummen;
tion with TCP or UDP ports, or UNIX-domain socket pathnames.
These multiple names lead to several inter-related chgglen

e Which level of name to use While we want our tools to
avoid incorporating application-specific knowledge, thsie
may require some knowledge of the application. In particu-

lar, the user of our tools may have to decide whether to treat
a host as a single node or as a collection of process-level

nodes. The process-level view might add useful detail ifieac
process has a distinct role, or it might just add confusion if

Host D Host B Host D
1st proxy 2nd proxy 1st proxy
Host B Host C Host B
1st proxy 2nd proxy 1st proxy

(a) unaggregated paths

Any host as Any host as Any host as Any host as Any host as
Client 1st proxy 2nd proxy 1st proxy Client

(b) corresponding aggregated path

Figure 3: Example of aggregation across multiple names

sualize how a system performs overall: where the appliocat®
signer thinks of an abstract series of steps through ancatialn,

processes on a host are interchangeable, as in servers builf@usal path analysis finds a combinatorial explosion of paths

using a process pool.
The selection of naming granularity interacts with the ckoi
of tracing technology. Packet sniffing, the least invasige-t
ing approach, makes it difficult or impossible to identifppr
cesses rather than hosts. Use of an interposition librachp s
as the one we describe in Section 3, allows process-lewel tra
ing.

e How to match node names and endpoint namesA host

might include several process nodes and multiple communi-

going through specific nodes. Aggregation is particulanyor-
tant for DHTSs, which are highly symmetric and use an intewlty
wide variety of paths for reliability and load balancing. gkxggat-
ing paths is useful for finding performance bugs that are due t
design or coding error common to all hosts.

Once causal path analysis has identified a set of isomorplttisp
it is possible to aggregate the results based orrdlesof a node
rather than itsvame For example, Coral and CoDeeN have thou-
sands of clients making requests; trees starting at onet elieuld

cation endpoints. For example, a Web proxy process could not normally be a}ggregated with trees starting at anotlherarA
accept HTTP requests on port 8090 and send forwarded re-Other example, Figure 3(a) shows two causal paths with e sa
quests using a series of ephemeral port numbers; in this case Shape but different hostnames. In the top path, Host D fibs th
all these connections belong to one process. However, the Fole of the first-hop proxy, and Host B fills the role of the sedo
same host might run both a Web server and an FTP server, N0P Proxy; in the other path, Host B is the first-hop proxy and a

in which case the two different server ports correspond to

distinct processes. Using an interposition library, we-cap

Host C is the second-hop proxy. What we might like to see in-
stead is the aggregated path in Figure 3(b), which aggredghge

ture enough information to match endpoints to processes; it cliénts, first-hop, and second-hop proxies. Of course, teggre-

is much harder using packet-sniffing.
e How to find both ends of a path Whenever possible, we

capture trace records at each host in a distributed system.

gated paths should still be available, in case a performaratdem
afflicts specific nodes rather than a specific task.
Currently, our code aggregates clients, but we have notnyet i

Thus, each message within the system generates two tracePlémented aggregation across servers. To aggregatescliemtes-
records: one at the sender and one at the receiver. In orderignate each TCP or UDP port éisedor ephemerand each node

to get both sender and receiver timestamps for a message @S @ client or a server. A port is fixed if it communicates witiny

we need to match up the two trace records — in effect, find- other ports. For example, a node making a DNS request will al-
ing a common name for each message. This task is usua||ylocate a source port dynamically (normally either seqaditior
straightforward but can be complicated by multihomed hosts ~ andomly), but the destination port will always be 53. Thua)sal

reordered or lost datagrams, or clock offset.

path analysis discovers that 53 is a fixed port because & tallkun-

The distinction between node names and endpoint namessallow dreds or thousands of other ports. A node is considered arséit

the analysis of a single distributed application by usindtipie
traces obtained with several different techniques. Fomgie, we
could trace UNIX-domain socket messages using the intéipos
library and simultaneously trace network messages usirackep
sniffer.

uses fixed ports at least once, and a client otherwise. Oaritim
replaces all client node names with a single string “CLIENIRY
replaces all ephemeral port numbers with an asterisk béfatd-
ing and aggregating trees. Thus, otherwise identical tregsining
at different clients with different ephemeral source-patmbers

Table 1 shows the various names (the columns) captured by ourcan be aggregated.

interposition library, and where they are used in our arislyg/e
include this table to illustrate the complexity of name feton; it
may be helpful to refer to it when reading Sections 4 and 5.

2.5.1 Aggregation across multiple names

Causal path analysis aggregates similar path instanaegath
patterns, presenting to the user a count of the instancesréuaf
along with average timing information. The simplest formagf
gregation is combining path instances with identical st i.e.,
those that involve exactly the same nodes in exactly the same
der. More advanced aggregation techniques look for isomorp
path instances that perform the same tasks via differergs)qmbr-
haps for load balancing. Without aggregation, it is diffidol vi-

3. TRACE COLLECTION

We now describe how we capture traces of inter-node communi-
cation. We wrote an interposition library, LibSockCap, apture
network and inter-process communication. LibSockCapuwapt
mostly the same information asrace -e networki.e., a trace of all
networking system calls), plus additional needed inforomatvith
much lower overhead. The extra information is needed for rec
onciliation and includes fingerprints of UDP message cdstéhe
PID of peers connecting through a Unix socket, the peer naee e
whenacceptdoes not ask for it, the local name bound wiennect
is called, and the number assigned to a dynamic listeningrmbr
specified withbind. Further, LibSockCap imposes less thaus af



Socket API parameters Other captured information
both ends: socket file peer
(IP addr,port) path descriptor  length hostname  PID  PID  checksum timestamp

trace file header C C C

new connection: TCP C C C

new connection: UDP or raw IP C (3 C

new connection: UNIX domain C C C C

message: TCP or UNIX domain C C C

message: UDP or raw IP C C C C C

reconciliation: matching send & rcv recs §] ] ] ] ] U

causal analysis (message linking) U U U

aggregating nodes U U

Table 1: Where different naming information is captured (C) or used (U).
overhead per captured system call, while strace imposes &fus We measured the absolute overhead of LibSockCap by compar-
of overhead per system call. Finally, LibSockCap generatees ing the time to make read/write system calls with and withotetr-
about an order of magnitude smaller than strace. position active, using the server described above. LibSapkadds
LibSockCap traces dynamically linked applications on aiay-p about 0.0fs of overhead to file reads and writes, which generate

form that supports library interposition via_PRELOAD. LibSock- no log entries; 1.03sto TCP reads; 1.Q&sto TCP writes; and
Cap interposes on the C library’s system call wrappers toalbg 0.75usto UDP writes. In our benchmark, Apache made at most
socket-API activity, for one or more processes, on all netvports 3,019 system calls per second, equal to an overhead of al8%t O

and also on UNIX-domain sockets. For each call, LibSockCap of one CPU's total cycles.

records a timestamp and all parameters (as shown in Tablbeitl), .

not the message contents. In addition, LibSockCap monitaits 3.2 Deployment experience

to fork so that it can maintain a separate log for each process. To capture the traces used for our experiments, we sent tbbSo
On datagram sockets, it also records a message checksuratso th Cap sources to the authors of Coral and CoDeeN. Both reported

dropped, duplicated, and reordered packets can be detected back that they used their existing deployment mechanistinstall
There are several advantages to capturing network trafag LibSockCap on all of their PlanetLab nodes. After the preess

library interposition rather than through packet sniffiegher on ran and collected traces for a few hours, they removed LikSoc

each host or on each network segment. Cap, retrieved the traces to a single node, and sent them to us

e Logical message semanticsnessages are captured with the While LibSockCap is more invasive than packet sniffing (iatth
same order and boundaries that the application sees, ratheiit requires additional software on each node), packet sgiffs
than after the network potentially fragments or combinesth  more logistically challenging in practice, as we discussSet-

e Finer granularity : LibSockCap attributes communication tion 7.
to individual processes rather than to whole hosts. Alsio, Li

SockCap can capture UNIX-domain sockets, while sniffing 4. TRACE RECONCILIATION

cannot. L .

o Efficiency: LibSockCap adds less overhead than running a 1€ {race reconciliation algorithm converts a set of perpss
sniffer on the same host, as is necessary on PlanetLab, be-races of socket activity (both network and inter-processsages)
cause it runs in the memory space of the processes being!© & Single, more abstract, trace of inter-node messagess. aFh
traced and so does not require context switches or buffer 9°7thm includes translation from socket events to flowgmidt
copies to record messages names and node names. The output is a trace containing llogica

Interposition does have disadvantages relative to sniffing message tuples O.f the. form (sender-t]mestamp,. sgndeemﬁ,dp

o No control packets only sniffing can capture network con- sender-node, receiver-timestamp, receiver-endpoijver-node).
trol messages. However, our work focuses on the causal re- Name translation: In the LibSockCap traces, easbndor recv
lationships between logical messages, not control message event contains a timestamp, a size, and a file descnptor.- Rec

e Lack of packet boundaries, fragments, and retransmis- onciliation converts each file descriptor to a flow-endpaiate.
sions problems arising in t’he network’stack or in the net- With U.le dome}in and TCP sockets, we can easily .ﬁn.d th‘? flow-
work, such as excessive fragmentation or retransmissien, a endpoint name (|.e.,.UNIX path @“P. address, port pa|r) In prior

connect accept or bind API events in the trace. File descriptors

not visible to our interposition library. for datagram (UDP or raw IP) sockets, however, may or may not
Timestamps added by user processany delays introduced ST !
* P y P y A be bound to set source and destination addresses. If noertiwe

by the network stack happen after LibSockCap timestamps address is available from tlsendtoor recvfromparameter and we

the event and get attributed to network delay. ) .

The advantages are significant enough that even in envinatisme gz(ejrtgseshosts public IP address or the loopback addrese &t
where sniffing is feasible, we prefer to use LibSockCap. Timestamps: We include the timestamps from both the sender
3.1 Runtime overhead and receiver traces in the final trace. With both timestaritgs,

| ifv that LibSock . ligibl head h simple to obtain the network latency of each message, as we de
To verify that LibSockCap imposes negligible overhead an th  o4jpe in Section 5.2. Whenever we have only one timestam fo

applications being traced, we ran Seda’s HttpLoad [20]giSava : . :
1.4.1.01 against Apache 1.3.1. Both the client and the server were 2‘;2?%?&2?;?;% we only sniffed one endpoint), wailikar the

dual 2.4 GHz Pentium 4 Xeon systems running Linux 2.4.25- Lib
SockCap had no measurable effect on throughput or on average
90th-percentile, or maximum request latency for any levebfo 5. MESSAGE LINKING ALGORITHM

fered load. However, the server CPU was not saturated dthisg Causal path analysis looks for causal relationships indbieal
benchmark, so LibSockCap might have more impact effect on a messages produced by trace reconciliation. Its outputaiection
CPU-bound task. of path patterns, each annotated with one or more scoresatirtj
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Figure 4: Sample link probability tree and the two causal pah
instances it generates. Solid, dotted, and dashed arrowsdiz
cate “probably-true,” “probably-false,” and “try-both” | inks,
respectively.

Node B

time

Figure 5: Three calls into B that might have caused B-C.

importance.Message linkingor linking for short, is a new causal-

ity analysis algorithm for distributed communication &ac Link-
ing works with both local-area and wide-area traces, whialy bre

captured using LibSockCap, a sniffer, or other methods. @e-c

pare linking with other causal path analysis algorithmshatend
of this section.

5.1 Algorithm description

For each message in the trace, linking attempts to deterifhine
the message is spontaneous or is caused by another meseage.
many cases, the cause is ambiguous, in which case linkimgnass
a probability for thdink between thgparentmessage into the node
and thechild message out of the node. The probabilities of the links

for all parent messages to a given child message sum to one.

Linking then constructs path instances from these linksasid
signs each path instance a confidence score that is the profduc

all of the link probabilities in the tree. The total scoreass all in-
stances of a given path pattern represents the algorithstirmate

of the number of times the pattern appeared in the trace. itika |

is sufficiently ambiguous (e.qg., if it has a probability néas), two
path instances will be built, one with the link and one withitu
Figure 4 shows an example link probability tree and the dpath

instances it generates. The tree on the left shows all of the m

sages that might have been caused, directly or indirecyiyorie

specific A~B message, with a probability assigned to each pos-

sible link. From this tree, the linking algorithm generaties two
causal path instances on the right, each with a probabiiset on

the decisions made to form it. Here, two path instances ame ge

erated because the link betweer-8 and B—F has probability
close top = 0.5.

In broad terms, the linking algorithm consists of three stéf)
estimating the average causal delay for each node, (2)ndi@ieg
possible parents for each message, and (3) building patmices

and then aggregating them into path patterns. We describalth

gorithm in more detail in the sections that follow.

Step 1: Estimating the average causal delay

The probability of each link between a parent message intad a
a child message out of B is a function of how well it fits the @us

delay distribution. Causal delays represent the servicegsiat each
node. Therefore, as is common in system modeling, we fit tleem t
an exponential distributiofi(t) = Ae~M[16], where] is a scaling
parameter to be found. Figure 6 shows a sample exponengial di
tribution. An exponential distribution exactly models &®as in
which service times are memoryless—that is, the probglhtiat

a task will complete in the next unit time is independent oivho
long the task has been running. However, not all systems have
memoryless service times. Even in systems with other setirite
distributions, the exponential distribution retains afukproperty:
because it is a monotonically decreasing function, theiriglal-
gorithm will assign the highest probability to causal rielaships
between messages close to each other in time. Thus, theengon
tial distribution works well even if its scaling factor isdarrect or
the system does not exhibit strictly memoryless service$im

We also considereti(t) = Ate ", a gamma distribution in which
a = 2. This gamma distribution assigns the highest probadsslitd
delays near AA, which causes the linking algorithm to produce
more accurate results X is estimated correctly, but much worse
results otherwise.

We use an independent exponential distribution for each(B
pair, by estimating the average deldy_.c that B waits before
sending a message to C. The delay distribution scalingrfagtoc
is equal to ¥dg_.c.

Correctly determininglz_.c requires accurate knowledge of which
message caused which; thus, linking only approximdtes: and
hencehg_.c. Linking estimateslg_.c as the average of the small-
est delay preceding each message. That is, for each messa@e B
it finds the latest message into B that preceded it and insltits
delay in the average. If there is no preceding message withéc-
onds, B~C is assumed to be a spontaneous message and no delay
is included. The value af should be longer than the longest real
delay in the trace. We use= 2 sec for the Coral and CoDeeN
traces, buk = 100msfor the Slurpee trace. The valuexfis user-
specified, depends only on expected processing times, ashdo
peed to be atight bound.

In the presence of high parallelism, the estimate for ehotay
be too low, because the true parent message may not be the most
recent one. However, because the exponential distribigimono-
tonically decreasing, the ranking of possible parents fmeasage
is preserved even whehandA are wrong. It is possible to iterate
over steps (1) and (2) to improve the estimata dfut linking does
not currently do so.

Step 2: Finding and scoring parent messages

After estimating\g_.c for each communicating pair of nodes-£C,
the linking algorithm assigns each causal link a weight b aseits
delay. The weight of the link between->XB and B—C in the ex-
ample in Figure 5 is set to

f(ta—ty) = e hocllet),

where(t4 —t1) is the delay between the arrival of-X B and the
departure B-C. Additionally, B—C may not have been caused by
any earlier message into B, and instead might have beenaspont
neous. This possibility is given a weight equal to a link wdtday
y-dg_c. Yy should be a small constant; we uge- 4. A larger
y instructs the algorithm to prefer longer paths, while a $enai
generates many short paths that may be suffixes of corrdus.pat
Spontaneous action is the most likely choice only when these
no messages into B within the lastdg_.c time. Figure 6 shows
the weights assigned to all three possible parents-ef@ as well
as the weight assigned to the possibility that it occurreah&p
neously.

Once all of the possible parents for this-B message have been
enumerated, the weights of their links are normalized to sufn
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Figure 6: An exponential distribution with A = 1, showing the
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Figure 7: Possible-parent trees for the messages in Figure 5

These normalized weights become the probability for eadk li
Figure 7 shows the possible parents for the 8 and B—D calls,
with their assigned probabilities.
Hosts or processes that were not traced resulilitimestamps
in the reconciled trace. That is, if node A was traced and B was
not, then A~B messages will be present with send timestamps but
not receive timestamps, and-BA messages will have only receive
timestamps. Both estimatirdg .5 and assigning possible parents
to B—A rely on having timestamps at both nodes. In this case, we
use A's timestamps in place of B’'s and only allow causalitgkba
to the same node: AB—A. This assumption allows calls from
or to nodes outside the traced part of the system but avoisis fa
causality between, e.g., several unrelated calls to the sanver.
After enumerating and weighting all possible parents fahea
message, the linking algorithm uses these links to genaréeof
the possible children for each message, preserving thepliol-
abilities. This inversion, shown in Figure 8, is necessagause
causal path instances are built from the root down.

Step 3: Building trees

The final step of the linking algorithm builds path instanéresn
the individual links, then aggregates them into path pasteirhat
is, if step (2) finds the relationships shown in Figure 4(@jauld
generate the two causal path instances shown in Figure vitt),
the following probabilities:

p = 08:09-(1-02) (1—-0.1)-(1—0.48)
~ 0270
P, = 08:09:(1-02) (1—0.1)-0.48
0.249

Each causal link included contributes a facpocorresponding to
its probability. Each causal link omitted contributes-a fi factor.
For each link in the tree (e.g., did-AB cause B- C?), step (3)
treats it agprobably-false probably-true or try-both, based on its
probability. Decisions are designated try-both if thewlpability is
close to 0.5 or if they represent one of the most likely cadses
a given message. That is, in Figure 4, i is the most likely
cause of B~D, then the A~B—D link will be made a try-both
even though its probability is not near 0.5, ensuring thdeast

0.64\0.61

Figure 8: Possible-child trees formed from the trees in Figee 7.

0.24 .22

0.09 .08

one cause of B:D is considered even if each possible cause has
probability p < 0.5. The number of path instances generated from
a given root message@(Zk), wherek is the number of ambiguous
links from that message or its descendants that are treatag-a
both. Thereforek must be limited to bound the running time of
linking.

Linking assigns a probability to each tree equal to the pcodu
of the probabilities of the individual decisions—usi(iy— p) for
decisions to omit a causal link—made while constructinglfita
specific path pattern is seen several times, we keep trabtle dbtal
score (i.e., the expected number of times the pattern wa aed
the maximum probability. Path patterns in the output aresgaly
ordered by total score.

Big trees will have low scores because more decisions (more u
certainty) goes into creating them. This behavior is exgukct

5.2 Node and network latency

The latency at each node B is the time between the receive time
stamp of the parent message arriving at a node B and the send
timestamp of the child message that node B sends. Sinceibth t
stamps are local to B, clock offset and clock skew do not affede
latency. For aggregated trees, the linking algorithm dates the
average of that node’s delays at each instance of the tréghted
by the probability of each instance. In addition to the agerave
optionally generate a histogram of delays for each nodesirirtre.

The network latency of each message is the difference batwee
its send and receive timestamps. These timestamps ar&veelat
to different clocks (they come from LibSockCap logs at diiffe
hosts), so the resulting latency includes clock offset dmavaun-
less we estimate it and subtract it out. We use a filter on tie ou
put of the linking algorithm to approximate pairwise clociset
by assuming symmetric network delays, following Paxsoa&ht
nigue [12]. For simplicity, we ignore the effects of cloclkesk As
a result, our results hide clock offset and exhibit symmetvierage
delays between pairs of hosts.

5.3 Algorithm comparison

Our earlier work, Project 5 [1], presented two causal-paid-a
ysis algorithmsnestingand convolution The nesting algorithm
works only on applications using call-return communicatand
can detect infrequent causal paths (albeit with some imacguas
their frequency drops). However, messages must be desijast
either calls or returns and paired before running the ngstigo-
rithm. If call-return information is not inherently part tife trace,
as in the systems analyzed here, then trying to guess itas-err
prone and is a major source of inaccuracy. Linking and ngstin
both try to infer the cause, if any, for each message or edlirn
pair in the trace individually.

The nesting algorithm only uses one timestamp per message. |
is therefore forced either to ignore clock offset or to usezfutime-
stamp comparisons [1], which only work when all clocks diffg
less time than the delays being measured. Since clocks e of
unsynchronized—PlanetLab clocks sometimes differ by tesor
hours—our approach of using both send and receive timestamp
works better for wide-area traces.

The convolution algorithm uses techniques from signal @see
ing, matching similar timing signals for the messages cagriito a



Number of Trace | Number of
Trace Date messages duration hosts
CoDeeN | Sept. 3,2004| 4,702,865 1 hour 115
Coral Sept. 6, 2004| 4,246,882 1 hour 68

Table 2: Trace statistics

Solid arrows show message paths, labeled one-way delags, kviown. Dot-
ted arcs show node-internal delays between message eMenlss are labeled
with name and total delay for node and its children.

Figure 9: Example of call-tree visualization.

node and the messages leaving the same node. Convolutie wor
with any style of message communication, but it requiresesa
with a minimum of hundreds of messages, runs much more slowly
than nesting or linking, and is inherently unable to detact paths.
When we applied convolution to Coral, it could not detecerar
paths like DHT calls and could not separate node processimegst

of interest from network delays and clock offset.

The linking and nesting algorithms both ha®¢nlgn) running
time, determined by the need to sort messages in the traceéy t
stamp, but both are dominated by@m) component for the traces
we have tried. The convolution algorithm requu@(st Igt $) run-
ning time, where is the duration of the trace aisds the S|ze of the
shortest delays of interest. In practice, convolution liguakes
one to four hours to run, nesting rarely takes more than tyset-
onds, and linking takes five to ten minutes but can take mugt le
or much more given a non-default number of try-both decisiahn
lowed per causal-link tree. Linking and nesting both reg@(n)
memory because they load the entire trace into memory, wbile
volution requires a constant amount of memory, typicallglem
1 MB. Our Project 5 paper [1] has more details for nesting and
convolution, while Section 6 has more details for linking.

6. PLANETLAB RESULTS

In this section, we present some results from our analyses of 6.3

traces from the CoDeeN and Coral PlanetLab applicationseTa
presents some overall statistics for these two traces.

6.1 Visualization of results

For a given causal path pattern, we use a timeline to represen
both causality and time; for example, see Figures 10, 12a48,
14. Boxes represent nodes and lines represent communmitiai(s;
each node or line is labeled with its mean delay in msec. If we d
not have traces from a node, we cannot distinguish its intete-
lay from network delays, so we represent the combinatioruoi s
a node and its network links as a diamond, labeled with thed tot
delay for that combination. Time and causality flow left ight, so
if a node issues an RPC call, it appears twice in the timelinee
when it sends the call, and again when it receives the return.

These timelines differ from the call-tree pictures tramtiglly
used to represent system structure (for example, Figure[19jn

Code name| Hostname

A&M planetlab2.tamu.edu

A&T CSPlanet2.ncat.edu

CMU planetlab-2.cmcl.cs.cmu.edu

CT planlab2.cs.caltech.edu

How nodeb.howard.edu

MIT planetlab6.csail.mit.edu

MU plnode02.cs.mu.oz.au

ND planetlab2.cse.nd.edu

PU planetlab2.cs.purdue.edu

Pri planetlab-1.cs.princeton.edu

Ro planet2.cs.rochester.edu

ucCL planetlab2.info.ucl.ac.be

UVA planetlabl.cs.virginia.edu

WaC cloudburst.uwaterloo.ca (Coral DHT process)
WaP cloudburst.uwaterloo.ca (Proxy process)
cl Any client

dnsN some DNS server

lo local loopback

webN some Web origin server

Table 3: Code names for hosts used in figures.

and Figure 1 in [7], or the diagrams in our earlier work [1]} lue
found it hard to represent both causality and delay in atoadl;
especially when communication does not follow a strict-calurn
model. Magpie [2] also uses timelines, although Magpie 1s¢pa
threads or nodes vertically, while we only do so when lodygaér-
allel behavior requires it.

Itis possible to transform the timeline in Figure 10 to a tae,
as in the hand-constructed Figure 9, but this loses the Ny<elp-
ful proportionality between different delays.

To avoid unreadably small fonts, we use short code namegin th
timelines instead of full hostnames. Table 3 provides astedion.

6.2 Characterizing causal paths

Our tools allow us to characterize and compare causal p&th pa
terns. For example, Figure 10 and Figure 12 show, for Cordl an
CoDeeN respectively, causal path patterns that includefsegaiss
and a DNS lookup. One can see that CoDeeN differs from Coral in
its use of two proxy hops (described in [19] as a way to agdesga
requests for a given URL on a single CoDeeN node).

A user of our tools can see how overall system delay is broken
down into delays on individual hosts and network links. Rart
the user can explore how application structure can affedbpe
mance. For example, does the extra proxy hop in CoDeeN con-
tribute significantly to client latency?

Note that we ourselves are not able to compare the end-to-end
performance of Coral and CoDeeN because we do not have traces
made at clients. For example, one CDN might be able to optimiz
client network latencies at the cost of poorer server lodalnuing.

Characterizing node delays

When looking for a performance bug in a replicated distebut
system, it can be helpful to look for large differences inagebe-
tween paths that should behave similarly. Although we dobest
lieve there were any gross performance problems in eithBxe@hl
or Coral when our traces were captured, we can find paths with
significantly different delays. For example, Figure 13 shdwo
different but isomorphic cache-miss paths for CoDeeN é&lpeghs
do not require DNS lookups). The origin server delay (a total
cluding both network and server delay) is 321 ms in the top pat
but only 28 ms in the bottom path. Also, the proxies in the top
path show larger delays when forwarding requests than ihdke
bottom path. In both cases, the proxies forward respongadiya

Similarly, we can focus on just one role in a path and compare
the delays at the different servers that fill this role. Tabkhows
mean delays in proxies for cache-hit operations (the couestl
patterns in this case are trivial).
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Figure 10: Linking algorithm output for a Coral miss path wit h DNS lookup, delays in ms.

Node Mean | Number of
name ‘ delay ‘ samples
CoDeeN
planetl.scs.cs.nyu.edu 0.29 ms 583
pll.ece.toronto.edu 1.47 ms 266
planlabl.cs.caltech.edu 0.59 ms 247
nodeb.howard.edu 4.86 ms 238
planetlab-3.cmcl.cs.cmu.edu 0.20 ms 53
Coral
planetl.scs.cs.nyu.edu 4.84 ms 6929
planetlab12.Millennium.Berkeley.EDY 6.16 ms 3745
planetlab2.csail.mit.edu 5,51 ms 1626
CSPlanet2.chen.ncat.edu 0.98 ms 987
planetlab14.Millennium.Berkeley.EDU 0.91 ms 595

Table 4: Examples of mean delays in proxy nodes.
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Figure 11: Node delay distributions (CoDeeN)

The message linking algorithm has enough information te gen
erate the entire distribution of delays at a node or on a latker
than just the mean delay. Figure 11 shows the delay disimitmit
for cache-hit operations on five nodes. The nodes in thisdigue
also listed in Table 4, which shows mean delay values fordbtire
nodes between 0 and 2 ms. The distribution for nodeb.hoadud.
shows two peaks, including one at 18 ms that strongly imgies
disk operation and corresponds with this node’s higher ndeay
in the table.

6.4 DHT paths in Coral

Coral uses a distributed hash table (DHT) to store inforomati
about which proxy nodes have a given URL and to store location
information about client$. Whenever a proxy does not have a re-
quested web object in its local cache, it searches the DHThtb fi
other nodes that have the object, and it inserts a recordiatoHT
once it has retrieved the object. Figure 14 shows one suchdaHT
in Coral. The sets of three parallel calls in this figure reftearal’'s
use of three overlapping DHTSs at different levels of logalfrom
the figure, itis also clear that Coral’'s DHT is iterative: lehop in a
DHT path responds directly to the requester rather thandating
the query to the next hop.

6.5 Algorithm runtime costs

We measured the CPU time and memory required to run the
reconciliation and message linking algorithms on seveaes.

1The Coral authors call their structuredistributed sloppy hash
table (DSHT) to emphasize design decisions they made to improve
load balancing.

Table 5 shows that these costs are acceptable. The CPU time re
quirements are higher than the nesting algorithm but loheen the
convolution algorithm [1]. The memory requirements refleet
need to keep the entire trace in memory for both reconaliaaind
linking. We expect the running time to &(nlgn) for both rec-
onciliation and linking because both require sorting. Hesvethe
O(n) portions of each program dominate the running time. The
running time for linking is heavily dependent on the prunpea
rameters used, particularly the number of try-both bitscated
per link probability tree. Memory requirements @én) for both
programs.

6.6 Metrics for sorting path patterns

The linking algorithm produces two scores for each pathepatt
it identifies: a raw count of the number of instances and exgpec
number of instances believed to be real. The latter is thecfuhe
probabilities of all instances of the path pattern. Sorbgghe ex-
pected number of instances is generally the most usefliairthe
patterns at the top of the list appear many times, have higfi-co
dence, or both. Highlighting paths that appear many timaseul
because they are where optimizations are likely to be usefigh-
lighting paths with high confidence helps suppress falséipes
(i.e., patterns that are inferred but do not reflect actuadjm be-
havior).

Two additional, composite metrics are: @jypectatior- count
and (2)expectatior- v/count The first is the average probability
of instances of each path, and it favors high-confidencespdthe
second captures the notion that seeing a path many timesases
the confidence that it is not a false positive, but not linearl

7. ENTERPRISE APPLICATIONS

Although this paper focuses on wide-area applicationsyipre
ous work on black-box debugging using traces [1, 2, 4] foduse
LAN applications. We had the opportunity to try our tools maces
from a moderately complex enterprise application, SILApeée do
not present detailed results from Slurpee, since LAN appbos
are not the focus of the paper and space does not permit anatdeq
treatment. However, Slurpee is the one system on which we hav
used linking, nesting, and convolution. Further, we ledrseveral
things applying WAPS5 to Slurpee that are applicable to wddea
applications.

The Slurpee system aids in supporting customers of a compute
vendor. It handles reports of incidents (failures or pagfailures)
and configuration changes. Reports arrive via the Inteamet,are
passed through several tiers of replicated servers. Betwaeh
tier there are firewalls, load balancers, and/or networkches as
appropriate, which means that the component servers anectaud
to a variety of distinct LANSs.

Since we could not install LibSockCap on the Slurpee servers
packet-sniffing was our only option for tracing Slurpee aad the
advantage of non-invasiveness. However, we found thetlogis
significantly more daunting than we expected. Packet sgifirs-
tems are expensive, and we could not allocate enough of them t
cover all packet paths. They also require on-site staff supp
set them up, configure switch ports, initiate traces, antkcothe
results. In the future, these tasks might be more automated.

2Slurpee is not its real name.
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Figure 12: Linking algorithm output for a CoDeeN miss path with DNS lookup, delays in ms.
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Figure 13: Linking algorithm output for two CoDeeN miss paths, delays in ms.

We obtained simultaneous packet traces from five sniffers, o
for each of the main LAN segments behind the main firewall. We
treated each packet as a message, and applied a variantreceur
onciliation algorithm (see Section 4) to generate a unifiade.

The five sniffers did not have synchronized clocks when thess
were made. Clock offsets were on the order of a few secondseSi

we had two copies of many packets (one sniffed near the sender

one sniffed near the receiver), we developed an algorithideio-
tify which sniffer’s clock to use as the sender or receiverastamp
for each server (node) in the trace. If the sniffer is on thmesa

switch as a node, then every packet to or from that node appear

in that sniffer’s traces. If we did not sniff the node’s svhif¢chen
we chose the sniffer that contained the most packets to or fhe
node.

We applied all three of our causal-path analysis algorittarike
Slurpee trace. The Slurpee trace conforms to call-retumrasécs
but does not contain the information needed to pair callb vét
turns. We tried several heuristics for pairing calls andnre, but
the inaccuracy in this step limited the usefulness of théimgsl-
gorithm. Convolution does not require call-return pairitgt it
does require a large number of instances of any given patier&e
of the Slurpee paths occurred infrequently and were notctide
by convolution. Some of the Slurpee hosts were only visiblie
trace for a few seconds and so did not send or receive enough me
sages to appear in any path detected by convolution. Linkis

We have not tested this tool on packet traces from a wide-area
system, but we believe it would work correctly. However, dugse
LibSockCap does not capture message contents and cantutscap
packet headers, LibSockCap traces do not currently coateingh
information to support this tool.

8. RELATED WORK

We divide related work into three categories: trace-basetl-t
nigues for causality and performance analysis, and othengasition-
based tools.

8.1 Trace-based analysis tools

Our previous work on Project 5 [1], which we have already de-
scribed earlier in this paper, is most closely related worAP5.
This earlier work ignored many practical issues in gathgtiaces,
particularly overlapping traces from multiple snifferagdaeconcil-
ing them into a single trace for analysis. Also, Project ®sting
algorithm depends on call-return semantics and is too thensd
clock offsets, while the convolution algorithm requiresdaraces
and cannot infer causality in the presence of highly vaeigivb-
cessing delays.

Magpie [2] complements our work by providing a very detailed
picture of what is happening at each machine, at the costeafing

able to detect both common and rare paths and was not hamperedo understand the applications running at each machine.pldag

by the lack of call-return pairing information.

7.1 Network address translation

In analyzing the Slurpee system, we found instances of m&two
address translation, which did not appear in the Coral or&&dD
traces but which might appear in other wide-area systems.

Network address translation (NAT) [6] allows network elense
to change the addresses in the packets they handle. In 8Jurpe
a load balancer uses NAT to redirect requests to severaérserv
replicas. Wide-area systems often use NAT to reduce theymes

uses Event Tracing for Windows, built into the Windows opera
ing system, to collect thread-level CPU and disk usage inéer
tion. Magpie does not require modifying the applicatiort, dhoes
require “wrappers” around some parts of the applicatioreiiTal-
gorithms also require an application-specéient schemawritten
by an application expert, to stitch traced information iréquest
patterns.

Several other systems require instrumented middleward-or b
naries. Pinpoint [4] focuses on finding faults by inferrirfgem
from anomalous behavior. Pinpoint instruments the middievon
which an application runs (e.g., J2EE) in order to tag eatthwit

on IPv4 address space assignments. NAT presents a probtem foa request ID. The Distributed Programs Monitor (DPM) [10] in

message-based causality analysis, because the sendecaiver
of a single message use different “names” (IP addressesh&oof
the endpoints.

We developed a tool to detect NAT in packet traces and to tewri
trace records to canonicalize the translated addressess. tddi
searches across a set of traces for pairs of packets thaideave
tical bodies and header fields, except for IP addresses atbise
that normally change as the result of routing or NAT. Whileaim
numbers of matches might be accidental (especially for UaXdkp
ets, which lack TCP’s pseudo-random sequence numbengheing
matches imply the use of NAT. The tool can also infer the diioec
of packet flow using the IP header’s Time-To-Live (TTL) fiedahd
from packet timestamps if we can correct sufficiently forckl off-
sets.

struments a platform to trace unmodified applications. DRgsu
kernel instrumentation to track the causality betweenspaiimes-
sages rather than inferring causality from timestampsader[11]
uses dynamic instrumentation to capture events and lochtt
tlenecks, but it does not organize events into causal paHis.
nally, some of the most invasive systems, such as NetLodg@r [
and ETE [8], find causal paths in distributed system by rgiyin
programmers to instrument interesting events rather thi@nring
them from passive traces. Pip [13] requires modifying, deast
recompiling, applications but can extract causal pathrigdion
with no false positives or false negatives. Because of thbdmi
information accuracy, Pip can check the extracted behagamnst
programmer-written templates and identify any unexpebtthv-
ior as possible correctness or performance bugs.
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Figure 14: Linking algorithm output for a DHT call in Coral, d elays in ms.

Number of Trace Reconciliation Message Linking
Trace message duration || CPU secs| MBytes || CPU secs| MBytes
CoDeeN | 4,702,865| 1 hours 982 697 730 1354
Coral 4,246,882| 1 hours 660 142 517 1148

Table 5: Runtime costs for analyzing several traces

8.2 Interposition-based tools

Several other systems use interposition. Trickle [15] Uses

brary interposition to provide user-level bandwidth limg. Mod-
elNet [18] rewrites network traffic using library interptiei to

multiplex emulated addresses on a single physical hostte®gs
such as Transparent Result Caching [17] and Interpositgsmis [9]

used debugging interfaces suchpasace or /proc to intercept
system calls instead of library interposition. Libraryanosition is
simpler and more efficient, but it requires either dynantydatked
binaries or explicit relinking of traced applications.

9. CONCLUSIONS

We have developed a set of tools called Wide-Area Project 5 [10]
(WAP5) that helps expose causal structure and timing in wide

area distributed systems. Our tools include a tracing stfua-
ture, which includes a network interposition library cédllebSock-

Cap and algorithms to reconcile many traces into a unifigdfis

messages; a message-linking algorithm for inferring daresa-
tionships between messages; and visualization tools foerge

ing timelines and causal trees. We applied WAP5 to two cdnten

distribution networks in PlanetLab, Coral and CoDeeN, andrt
enterprise-scale incident-monitoring system, Slurpee eracted

a causal behavior model from each system that matched padblis

descriptions (or, for Slurpee, our discussions with thentaémers).
In addition, we were able to examine the performance of iddia

nodes and the hop-by-hop components of delay for each reques
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