
Surviving congestion in geo-distributed storage systems
Brian Cho

University of Illinois at Urbana-Champaign
Marcos K. Aguilera

Microsoft Research Silicon Valley

Abstract. We present Vivace, a key-value storage sys-
tem for web applications that span many geographically-
distributed sites. Vivace provides strong consistency and
replicates data across sites for access locality and disaster
tolerance. Vivace is designed to cope well with network
congestion across sites, which occurs because the band-
width across sites is smaller than within sites. To deal
with congestion, Vivace relies on two novel algorithms
that prioritize a small amount of critical data to avoid de-
lays due to congestion. We evaluate Vivace to show its
feasibility and effectiveness.

1 Introduction
Web applications such as web mail, search, online stores,
portals, social networks, and others are increasingly de-
ployed in geo-distributed data centers, that is, data cen-
ters distributed over many geographic locations. These
applications often rely on key-value storage systems [24]
to keep persistent user data, such as shopping carts, pro-
files, user preferences, and others. These data should be
replicated across data centers or sites, to provide disaster
tolerance, access locality, and read scalability.

Traditional replication solutions fall in two categories:

• Local replication, designed for local-area networks,
which provide strong consistency and easy-to-use
semantics. Protocols for local replication include
ABD and Paxos [16, 37]. These protocols perform
poorly when replicas are spread over remote sites.
• Remote replication, designed for replicas at many

sites, which provides good performance in that case,
by propagating updates asynchronously (e.g., [24,
23, 40]). These protocols provide weaker forms of
consistency, such as eventual consistency [51].

Vivace is a key-value storage system that combines the
advantages of both categories, by providing strong con-
sistency, while performing well when deployed across
multiple remote sites. Strong consistency is desirable:
although weak consistency may be adequate in some
cases (e.g., [24, 23]), strong consistency is necessary in
others, when reading stale data is undesirable.1 The dif-
ficulty with providing strong consistency is that it re-
quires coordination across sites to execute storage re-
quests. At first glance, this coordination appears to be
prohibitive, due to the higher network latencies across

1For this reason, cloud services such as Google AppEngine, Ama-
zon SimpleDB, and others support both weak and strong consistency.

sites. However, typical round-trip latencies across sites
are not too high—around 50–200 ms—which can be
reasonable for certain storage systems. In fact, Megas-
tore [17] has demonstrated that synchronous replication
can sometimes work across sites. But the real problem
occurs when the cross-site links become congested, caus-
ing the round-trip latency to increase to several seconds
or more—as observed in systems like Amazon’s EC2
(Section 2). In that case, Megastore and existing syn-
chronous replication solutions suffer from delays of sev-
eral seconds, which are unacceptable to users. A study
by Nielsen [45] indicates that web applications should
respond to users within one second or less.

A solution to this problem is to avoid network conges-
tion, by provisioning the cross-site links for peak usage.
This solution can be expensive and wasteful, especially
when the system operates at peak usage only rarely, as
in many computer systems. A better solution is to provi-
sion cross-site links more conservatively—say, for typi-
cal usage—and design the system to deal with congestion
when it appears. This is the approach taken in Vivace.

The key innovation in Vivace is two novel strongly
consistent replication algorithms that behave well under
congestion. The first algorithm is simpler and imple-
ments a storage system with read and write atomic opera-
tions. The second algorithm is more complex and imple-
ments a state machine [50], which supports generic read-
modify-write atomic operations. These algorithms rely
on network prioritization of a few latency-critical mes-
sages in the system to avoid delays due to congestion.
Because the size and number of prioritized messages is
small, only a tiny fraction of the total network bandwidth
comprises prioritized data. We evaluate Vivace and its
algorithms to show that they are feasible and effective
at avoiding delays due to congestion, without consuming
resources significantly.

2 Setting and goals
We consider a system with multiple data centers or sites,
where each site consists of many machines connected by
a local-area network with low latency and high band-
width. Sites are connected to each other via wide-area
network links which have lower bandwidth and higher
latencies than the links within a site. Machines or pro-
cesses are subject to crash failures; we do not consider
Byzantine failures. Network partitions may prevent com-
munication across sites. Such partitions are rare, be-

Mbps K$/month Mbps K$/month Mbps K$/month
2 3.3 8 11.6 40 31.2
4 6.4 10 13.7 50 37.3
5 7.8 20 21.4 60 43.4
6 9.1 30 25.1 100 67.9

Figure 1: Sample cost to connect sites using MPLS
VPNs, as a function of the contracted maximum band-
width [5].

cause the cross-site links are either provided by ISPs that
promise very high availability, or by private leased lines
that also provide very high availability. Nevertheless,
partitions may occur; we represent them as larger net-
work delays that last until the partition is healed. The
system is subject to disasters that may destroy an entire
site or disconnect the site from the other sites. We repre-
sent such a disaster as a crash of many or all the machines
in the affected site.

Processes have access to synchronized clocks, which
are used as counters. These clocks can be realized with
GPS sensors, radio signals, or protocols such as NTP.
Alternatively, it is possible to replace the use of synchro-
nized clocks in Vivace with a distributed protocol that
provides a global counter. However, doing so would re-
duce performance of Vivace due to the need of a network
round-trip to obtain a counter value.

The network is subject to intermittent congestion
across sites, because the cross-site bandwidth is provi-
sioned based on typical or average usage, not peak us-
age. This is so due to cost considerations. For example,
small or medium data centers may use MPLS VPNs2,
which can provide a fixed contracted bandwidth priced
accordingly (Figure 1). Large data centers might use pri-
vate leased lines or other solutions, but the bandwidth
could still be much smaller than needed at peak times,
causing congestion. For example, in Amazon EC2, sim-
ple measurements of network latencies across locations
show that congestion occurs often, causing the round-trip
latencies of messages sent over TCP to grow from hun-
dreds of milliseconds to several seconds or more [36].

We assume the ability to prioritize messages in the net-
work, so that they are transmitted ahead of other mes-
sages. We evaluate whether this assumption holds in Sec-
tion 6.2. Support for prioritization is required only at the
network edge of a site—say, at the router that connects
the site to the external network—not in the external net-
work itself, because congestion tends to occur at the site
edge.

We wish a distributed key-value storage system
that replicates data across sites and provides strong
consistency, defined precisely by linearizability [33].
Roughly speaking, linearizability requires each storage

2MPLS VPN is a technology offered by ISPs to connect together
sites [1].

operation—such as a read or write—to appear to take ef-
fect sequentially at an instantaneous point in time.

The key-value storage system should support two
types of data objects: (1) RW objects, which provide
read-write storage, and (2) RMW objects, which pro-
vide state machines; RMW stands for read-modify-write,
which are operations that can modify the object’s state
based on its previous state. Objects of either type are
identified by a key. A RW object has two operations,
write(value) and read(), which stores a new value and
retrieves the current value of the object, respectively. The
size of object keys tend to be small (bytes), whereas the
values stored in an object can be much larger (KBs).

RMW objects have an operation execute(command),
which applies the command. RMW objects are state ma-
chines [50]—which are implemented by protocols such
as Paxos—and the command can be an arbitrary deter-
ministic procedure that, based on the current state of the
object, modifies the state of the object and returns a re-
sult. We consider a slightly weaker type of state ma-
chine, where if many concurrent commands are executed
on the same RMW object, the system is allowed to abort
the execution of the commands, returning a special value
⊥. Aborted operations may or may not take effect; if an
aborted operation does not take effect, the user can reis-
sue the operation after a while. By using known tech-
niques, such as exponential random back-off or a leader
election service, it is possible to guarantee that the oper-
ation takes effect exactly once [11].

3 Design and algorithms

We now explain the design of Vivace, with a focus on the
replication algorithms that it uses.

3.1 Architecture

Vivace has a standard architecture for a key-value storage
system, which we now briefly describe. There is a set of
storage servers, which store the state of objects, and a set
of client machines, which run applications. Applications
interact with Vivace via a client library.

Each object has a type, which is RW or RMW (Sec-
tion 2), and a replica set, which indicates the storage
servers and sites where the object is replicated. In ad-
dition, for each site, each object has a set of local storage
servers, called the local replica set (or simply local set)
of the object, which we explain in Section 3.2. Our al-
gorithms can make progress despite the crash of any mi-
nority of replicas in the replica set, plus any minority of
replicas in the local set. Replica sets and local sets can
be provisioned accordingly. For example, in our evalu-
ation we provisioned three replicas for every replica set
and local set, so the system tolerates one failure in each
set.

The type, replica set, and local set comprise the meta-
data of an object. To reduce the overhead of storing
metadata, objects are grouped into containers, and all ob-
jects in the container share the same metadata. The con-
tainer of an object is fixed and the container id is a part
of the object’s key. A directory service stores the meta-
data for each container. Clients consult the directory ser-
vice rarely, since they cache the metadata. The directory
service is itself implemented using Vivace’s replication
algorithms, except the metadata for the directory objects
is fixed: the type is a RW object, and the replica set is a
fixed set of DNS names.

3.2 Algorithm for RW objects

Vivace’s algorithm for RW objects is based on the ABD
algorithm by Attiya, Bar-Noy, and Dolev [16]. It is
a simple algorithm that provides linearizable read and
write operations that always succeed when a majority
of replicas are up. Moreover, the algorithm ensures
safety and progress in a completely asynchronous sys-
tem. In Section 3.3, we present a more complex algo-
rithm that implements a state machine for RMW objects.
That algorithm requires some partial synchrony to ensure
progress—as with any other state machine algorithm.

We now briefly describe the ABD algorithm. To write
value v to an object, the client obtains a new timestamp
ts, asks for the replicas to store (v, ts), and waits for a
majority of acknowledgments3. To read the latest value,
the client asks the replicas to send their current pairs of
(v, ts). The client waits for a majority of replies, and
picks the reply (v′,mts) with the largest timestamp mts.
The client then executes a write-back phase, in which it
asks replicas to store (v′,mts) and waits for a majority
of acknowledgments. This write-back phase is needed to
provide linearizability: it ensures that a subsequent read
operation sees v′ or a more recent value.

If the replicas are in different sites, the ABD algorithm
sends and receives messages across sites before the op-
eration can complete. If remote network paths are con-
gested, this remote communication can take a long time.
We propose to avoid these congestion delays, by having
the client use prioritized messages that are transmitted
ahead of other messages, thereby bypassing the conges-
tion. Prioritized messages must be small, otherwise these
messages themselves will congest the network. To ob-
tain small messages, we modify the ABD algorithm by
breaking up its messages into two parts: critical fields—
such as timestamps, statuses, and acks—that must be
sent immediately, and the other fields. We restructure the
ABD algorithm to operate correctly when the messages
are broken up, and then we use prioritized messages for

3In the algorithm in [16], there are no synchronized clocks, so there
is an extra round of communication to obtain a new timestamp. Here
we obtain the timestamp from the synchronized clocks.

sending the critical fields. The challenge in doing so is
threefold. First, we must still continue to provide lin-
earizability (strong consistency) when the messages have
been split; in fact, we define linearizability as the correct-
ness criteria for the new algorithm. The difficulty here is
that a message that is split in two parts may be inter-
leaved with the split messages of other clients, creating
concurrency problems. To address such problems, the
new algorithm includes some additional phases of com-
munication and coordination. Second, we must find a
very small amount of critical information to prioritize,
otherwise the prioritized data will congest the network;
we later analyze and evaluate the new algorithm to show
that the prioritized fields we chose indeed comprise a
small proportion of the total data sent. Third, we must
not impose significant extra overhead in the new algo-
rithm, otherwise it will perform worse than the original
algorithm when the network is not congested; in partic-
ular, the new algorithm has extra phases of communica-
tion; we later evaluate this overhead and show that it is
very small and worth the benefit, because the extra com-
munication occurs in the local area network.

We now describe the algorithm in more detail. To read
a value, the client uses a small prioritized message to ask
replicas to send their current timestamp. Replicas reply
with another small prioritized message. Once the client
has a majority of replies, it computes the highest times-
tamp mts that it received. It then asks replicas to send the
data associated with timestamp mts. The reply is a large
non-prioritized message with data but, in the common
case, a replica in the local site has the data, so this replica
responds quickly without remote communication. Thus,
the client can read the value without being affected by the
congestion on the remote path. The client then performs
a fast write-back phase, by sending a small prioritized
message with only the highest timestamp, not the data
value.

To write a value v, the client obtains a new timestamp
ts. We want to avoid sending v to remote sites in the
critical path. The client stores (v, ts) at temporary repli-
cas located in the same site as the client; the set of tem-
porary replicas is called the local replica set, and each
replica is called a local replica. The client also stores the
timestamp ts at the (normal) replicas—which are typi-
cally at remote sites—using small prioritized messages;
these messages carry only the timestamp ts, not the data
value, and they bypass congestion on the remote paths.
Once the client receives enough acknowledgments, the
operation completes. Meanwhile, in the background,
each local replica propagates the data value to the (nor-
mal) replicas. These larger messages do not delay the
client, even if there is congestion, because they are not
in the critical path. Furthermore, the larger messages are
not prioritized.

Algorithm 1 Vivace algorithm for RW objects
function read(key):

acks← sendwait(∗〈R-TS,key〉,nodes[key],d(n+1)/2e)
mts←max1≤i≤d(n+1)/2e acks[i].msg.ts
data← sendwait(∗〈R-DATA,key,mts〉,nodes[key],1)
sendwait(∗〈W-TS,key,data[0].ts〉,nodes[key],d(n+1)/2e)
return data[0].val

function write(key,val):
ts← clock()
sendwait(〈W-LOCAL,key, ts,val〉, local nodes[key],d(n+1)/2e)
sendwait(∗〈W-TS,key, ts〉,nodes[key],d(n+1)/2e)

function sendwait(msg,nodes,num acks):
send msg to nodes
wait for num acks replies
return the replies in an array acks[0..num acks−1]

upon receive 〈R-TS,key〉:
return ∗〈ACK-R-TS, ts[key]〉

upon receive 〈R-DATA,key, ts〉:
wait until ts[key]≥ ts and val[key] 6=⊥
return 〈ACK-R-DATA, ts[key],val[key]〉

upon receive 〈W-TS,key, ts〉:
if ts > ts[key] then

ts[key]← ts
if remote buf[key][ts] exists then

val[key]← remote buf[key][ts]
delete remote buf[key][x] for all x≤ ts

else val[key]←⊥
return ∗〈ACK-W-TS〉

upon receive 〈W-LOCAL,key, ts,val〉:
local buf[key][ts]← val
async

sendwait(〈W-REMOTE,key, ts,val〉,nodes[key],d(n+1)/2e)
delete local buf[key][ts]

return ∗〈ACK-W-LOCAL〉

upon receive 〈W-REMOTE,key, ts,val〉:
if ts = ts[key] then val[key]← val
else if ts > ts[key] then remote buf[key][ts]← val
return 〈ACK-W-REMOTE〉

Detailed pseudocode. The pseudocode is given by
Algorithm 1. We denote by read(key) and write(key,v)
the operations to read and write an object with the given
key; n is the number of replicas for the object, and f
is a fault-tolerance parameter indicating the maximum
number of replicas that may crash. The algorithm re-
quires that f<n/2, that is, only a minority of replicas
may crash. The replica set of an object with a given
key is denoted nodes[key], while the local replica set at a
given site is denoted local nodes[key,site]. We omit site
from local nodes[key,site] when the site is local (where
the client is). That is, local nodes[key] refers to the local
replica set at the client’s site. A prioritized message m is
denoted ∗〈m〉, and a normal message m is denoted 〈m〉.

The communication in the algorithm occurs via a sim-
ple function sendwait, which sends a given message msg
to a set of nodes and waits for num acks replies. The
replies are returned in an array.

To write a value, the client obtains a new timestamp
and executes two phases. In the first phase, the client
sends the value and timestamp to the local replicas, and
waits for an acknowledgment from a majority. In the
second phase, the client sends just the timestamp to the
replicas, using prioritized messages. When the client re-
ceives acknowledgments from a majority, it completes
the write operation. Meanwhile, the local replicas prop-
agate the value to the (regular) replicas. The client need
not wait for the propagation to complete, because a ma-
jority of the local replicas already store the data and a
majority of the replicas store the timestamp: if another
client in a different site were to execute a read operation,
it would observe the timestamp from at least one replica
and know what value it needs to wait for.

To read a value, the client executes three phases. In
the first phase, the client retrieves the timestamp from
a majority of the replicas, and picks the highest times-
tamp mts. In the second phase, the client asks the repli-
cas to send the data associated with this timestamp, if
they have it. A replica replies only if it has a timestamp
at least as large as the requested timestamp. This phase
completes when the client obtains its first reply. In the
common case, this reply arrives quickly from a replica
in the same site as the client. Once the second phase
has completed, the client knows the value that it must re-
turn for the read operation. In the third phase, the client
writes back the timestamp to the replicas using priori-
tized messages. When the client receives a majority of
acknowledgments, it completes the read operation.

Note that the client returns from a read operation with-
out having to write back the value v. This is possible be-
cause the client that originally sent timestamp mts to the
replicas did so only after it had stored v at a majority of
local replicas. When the read operation returns, a major-
ity of replicas has seen the timestamp mts of v, but not
necessarily v itself. However, we are guaranteed that a
majority of replicas subsequently receive v from the lo-
cal replicas.

3.3 Algorithm for RMW objects

We now present Vivace’s algorithm for state machines,
to implement RMW objects. We apply the same prin-
ciples as in Section 3.2: the basic idea is to break-up
the protocol messages into critical and non-critical fields,
restructuring the algorithm so that, in the critical path,
remote communication involves only the critical fields.
The non-critical fields are stored at a majority of local
replicas and later propagated to the (regular) replicas in
the background.

Our starting point is an algorithm for RMW objects
similar to the algorithms in [27, 21, 11], which we now
briefly describe—we later explain how we apply the
above principles to this algorithm. The base RMW al-

Algorithm 2 Algorithm for RMW objects in a LAN
function execute(key,command):

ots← clock()
acks← sendwait(〈OR,key,ots〉,nodes[key],d(n+1)/2e)
if acks =⊥ then return ⊥
mts←max1≤i≤d(n+1)/2e acks[i].msg.ts
mval← acks[i].msg.val where acks[i].msg.ts = mts
〈val,r〉 ← apply(mval,command)
w acks← sendwait(〈OW,key,ots,val〉,nodes[key],d(n+1)/2e)
if w acks =⊥ then return ⊥
else return r

function sendwait(msg,nodes,num acks):
send msg to nodes
wait for num acks replies
if any reply has status = false then return ⊥
else return the replies in an array acks[0..num acks−1]

upon receive 〈OR,key,ots〉:
if ots > ots[key] then

ots[key]← ots
return 〈ACK-OR, true, ts[key],val[key]〉

else return 〈ACK-OR, false〉
upon receive 〈OW,key,ots,val〉:

if ots≥ ots[key] then
ots[key]← ots
ts[key]← ots
val[key]← val
return 〈ACK-OW, true〉

else return 〈ACK-OW, false〉

gorithm is not new; we explain it here for completeness.
To execute a command, a client first obtains a new

timestamp ts, and sends it to the replicas. Each replica
stores the timestamp as a tentative ordering timestamp
and subsequently rejects smaller timestamps. The replica
replies with its current value and associated timestamp.
The client waits for a majority of responses, and picks
the value v with the highest timestamp. It applies the
command to the value v to obtain a new value v′ and
a response r. The client then asks the replicas to store
v′ with the new timestamp ts. Each replica accepts the
request if it has never seen a higher timestamp; other-
wise, the replica returns an error to the client. The client
waits for a majority of responses, and if any of them is
an error, the client aborts by returning ⊥; otherwise, if
no responses were an error, the client returns r.

The pseudocode is given by Algorithm 2. The first
message sent by a client has a tag OR, which asks each
replica to store a tentative ordering timestamp and re-
ply with its current value and timestamp. The second
message sent by a client has a tag OW, which asks each
replica to store the new value and timestamp. These mes-
sages can have data values that are large, and they are
sent in the critical path.

We now explain how to send just small messages in
the critical path, so that we can prioritize these messages
and make the algorithm go faster when there is conges-
tion. The OR message in Algorithm 2 itself does not have

Algorithm 3 Vivace algorithm for RMW objects
function execute(key,command):

ots← clock()
acks← sendwait(∗〈OR-TS,key,ots〉,nodes[key],d(n+1)/2e)
if acks =⊥ then return ⊥
mts←max1≤i≤d(n+1)/2e acks[i].msg.ts
data← sendwait(∗〈OR-DATA,key,mts〉,nodes,1)
if data =⊥ then return ⊥
〈val,r〉 ← apply(data[0].val,command)
sendwait(〈W-LOCAL,key,ots,val〉, local nodes[key],d(n+1)/2e)
w acks← sendwait(∗〈OW-TS,key,ots〉,nodes[key],d(n+1)/2e)
if w acks =⊥ then

return ⊥
else

return r

function sendwait(msg,nodes,num acks):
send msg to nodes
wait for num acks replies
if any reply has status = false then return ⊥
else return the replies in an array acks[0..num acks−1]

upon receive 〈OR-TS,key,ots〉:
if ots > ots[key] then

ots[key]← ots
return ∗〈ACK-OR-TS, true, ts[key]〉

else
return ∗〈ACK-OR-TS, false〉

upon receive 〈OR-DATA,key, ts〉:
wait until ts[key]≥ ts and val[key] 6=⊥
if ts[key] = ts then

return 〈ACK-OR-DATA, true,val[key]〉
else

return 〈ACK-OR-DATA, false〉
upon receive 〈OW-TS,key,ots〉:

if ots≥ ots[key] then
ots[key]← ots
ts[key]← ots
if remote buf[key][ots] exists then

val[key]← remote buf[key][ots]
delete remote buf[key][x] for all x≤ ots

else
val[key]←⊥

return ∗〈ACK-OW-TS, true〉
else

return ∗〈ACK-OW-TS, false〉
upon receive 〈W-LOCAL,key, ts,val〉:

local buf[key][ts]← val
async

sendwait(〈W-REMOTE,key, ts,val〉,nodes[key],d(n+1)/2e)
delete local buf[key][ts]

return ∗〈ACK-W-LOCAL〉

upon receive 〈W-REMOTE,key, ts,val〉:
if ts = ts[key] then

val[key]← val
else if ts > ts[key] then

remote buf[key][ts]← val
return 〈ACK-W-REMOTE〉

a data value, but its response carries data. We modify the
algorithm so that the response no longer carries any data,
just a timestamp. The client then picks the largest re-
ceived timestamp mts and must now retrieve the value
v associated with it, so that it can apply the command
to v. To do so, the client sends a separate OR-DATA

message to all replicas asking specifically to retrieve the
value associated with mts. In the common case, a replica
at the local site has the appropriate value and replies to
the client quickly. The client can now proceed as before,
by applying the command to obtain a new value v′ and
a response r that it will return to the caller when it is
finished.

The OW message in Algorithm 2 carries the new value
v′, so we must change it. The client uses the local replica
set as in the write function of Algorithm 1. The client
proceeds in two phases: it first sends v′ to the local repli-
cas in a W-LOCAL message and waits for a majority of
replies. In the background, the local replicas send the
data to the (regular) replicas. The client then sends just
the new timestamp ts to the replicas, knowing that they
will eventually receive the value from the local replicas.
Algorithm 3 presents the pseudocode with these ideas.

3.4 Optimizations
We now describe some optimizations to Algorithms 1
and 3, to further reduce the latency and bandwidth of
operations.
3.4.1 Read optimizations
We present two optimizations for the three-phase read
operation of Algorithm 1. The first optimization reduces
the number of phases, while the second removes the need
for a client to communicate with a majority of replicas.
Avoiding or parallelizing the write-back phase. Recall
that Algorithm 1 has a write-back phase, which propa-
gates the largest timestamp mts to a majority of replicas.
This phase can be avoided in some common cases. In the
original ABD algorithm, if (C1) the client receives the
largest timestamp mts from a majority of replicas in the
first phase, it can skip the write-back phase. Similarly,
we can skip this phase in Algorithm 1, provided that the
same condition (C1) is met and another condition is also
met: (C2) the timestamp of the data received in phase
two is also mts. (Condition (C2) is not needed in the orig-
inal ABD algorithm because the data and timestamps are
together.) With this optimization, in the common case
when there are no failures or concurrent writes, a read
completes in two phases. It is also possible to read in
two phases when (C1) is not met, but (C2) is. To do this,
we add a parallel write-back in the second phase, trig-
gered when the client observes that (C1) does not hold.
The client proactively writes back mts in phase two, in
parallel with the request for data. When a data reply is
received, the client checks (C2)—it compares the data
timestamp with mts—and if it holds the read operation
can complete in two phases. There are two rare corner
cases, when (C2) does not hold. In that case, if (C1) was
met in phase one, the read remains as in Algorithm 1;
if neither (C1) nor (C2) hold, then the read can use the
parallel write-back in phase two.

Reading data from fewer replicas. This optimiza-
tion reduces bandwidth usage, by having the client send
R-DATA requests to only some replicas. After the first
read phase, the client considers the set of replicas for
which it received ACK-R-TS containing the large times-
tamp mts. If a local replica exists in this set, the client
sends a single R-DATA request to that replica. If not, the
client sends the request to a subset of replicas, based on
some policy. For example, the client can keep a history
of recent latencies at remote links, and send a single re-
quest to the replica with the lowest latency. The policy
used affects performance, but policy choice is orthogonal
to the algorithm.

3.4.2 Role change optimizations

In these optimizations, the role played at a node is moved
to another node: the first optimization moves the execu-
tion of commands from the client to a replica, and the
second moves the client role from outside to inside a
replica.

Executing commands at replicas. In the execute oper-
ation of Algorithm 3, the client reads the current value
of the object from the replicas, applies the command to
obtain the new value, and writes that value to the repli-
cas. Doing so involves transferring the value from the
replicas to the client and back to the replicas. If the value
is large, but the command is small, it is more efficient
for the client to send the command to the replicas and
thereby avoid transferring the value back and forth. To
do this, the client first sends the OR-TS message and finds
the largest timestamp mts—this determines the state on
which the command should be applied. Then, rather than
retrieving the data, the client sends the command to the
replicas and the timestamp mts. The replicas apply the
command to the value with timestamp mts (they may
have to wait until they obtain that value, but they eventu-
ally do), or they reject the command if they see a larger
timestamp. If a replica applies the command, it stores
the new value in a temporary buffer together with the
new timestamp. The client waits for a majority of re-
sponses, and if none of these are rejects, the client can
send OW-TS messages as before. A replica then retrieves
the value from its temporary buffer. This optimization re-
duces the bandwidth consumption of remote links when
the command is smaller than the data value.

Delegating to a replica. In Vivace, the client library
does not directly execute Algorithms 1 and 3. Rather,
the library contacts one of the replicas, which then exe-
cutes the algorithms on behalf of the client. Doing so is a
common technique that saves bandwidth of the client, at
the expense of the added latency of a local round-trip. It
also makes it possible to modify the algorithms without
changing the client library.

Message type normal max priority max
delay delay

Local, within site δ δ

Remote, across sites D d

Figure 2: One-way delay parameters for latency analysis.

4 Analysis
We now analyze the algorithms of Section 3.

4.1 Latency
We first consider latency, when a majority of the replicas
are on sites different from the client’s. (If a majority of
the replicas are in the client’s site, clients complete their
operation locally.) One-way message delays are repre-
sented by a few parameters, depending on whether the
delay is within or across sites, and whether the message
is normal or prioritized, as shown in Figure 2. Within a
site, normal and prioritized messages have the same de-
lay δ , due to lack of congestion. The delay for messages
sent to remote sites are represented as D when sent nor-
mally, and d when prioritized. All the delay parameters
incorporate the time to send, transmit, receive, and pro-
cess a message.

Figure 3 summarizes the results. An execution of an
operation can have different latencies, depending on the
set of live replicas and the object state at those replicas.
We analyze two cases: common and worst. The common
case represents a situation with no failures, so that there
is a live replica at the local site (the site where the client
is). The worst case occurs when (a) all replicas at the
local site are failed, and (b) the latest value is not yet
stored at any replicas in the replica set; it is stored only
at temporary, local set replicas, in a site remote to the
client.

We first consider writes of RW objects. The ABD al-
gorithm has a round-trip between the client and replicas
(latency: 2D). In the new Algorithm 1, this round-trip
is replaced by two phases: the first one has a round-trip
with local replicas (2δ), and the second one has a prior-
itized round-trip to remote sites (2d). By adding these
delays, we obtain the total write latencies in Figure 3.

The read operation of ABD has two phases, each with
a round-trip (2D+ 2D). Algorithm 1 has three phases.
The first phase has a prioritized round-trip (2d). The sec-
ond phase depends on whether there is a replica at the
client’s site. If there is, the phase has a local round-
trip (2δ); otherwise, there are three message delays:
(1) the client sends a prioritized request to the replicas
(d); (2) the replicas may not have the most recent value
and must wait for it from a remote temporary replica (D);
and (3) a remote replica sends the value to the client (D).
The final write-back phase has a prioritized round-trip to
remote replicas (2d). By adding these delays, we obtain
the total of read latencies in Figure 3.

Algorithm Operation Common Case Worst Case
ABD Algorithm read 4D 4D
(prior work) write 2D 2D
Algorithm 1 read 2δ +4d 5d +2D
(new) write 2δ +2d 2δ +2d
Algorithm 2 execute 4D 4D
(prior work)
Algorithm 3 execute 4δ +4d 2δ +5d +2D
(new)

Figure 3: Message delays: common and worst cases.

From Figure 3, we can see that reads and writes of RW
objects are faster with the new Algorithm 1 than with
ABD, because typically δ � d � D. Also note that, in
the common case, the latency of Algorithm 1 is indepen-
dent of D, which is not true for ABD.

We now consider the execute operation for RMW ob-
jects. Algorithm 2 has two remote round-trips (2D+2D).
Algorithm 3 has four phases. The first and fourth phases
each have a prioritized round-trip (2d + 2d). Without
failures, the second and third phases have a local round-
trip (2δ +2δ). When replicas at the local site are not live,
the read phase is prolonged, as in the read operation of
Algorithm 1, which we analyzed above (it takes d + 2D
instead of 2δ). By adding these delays, we obtain the to-
tal of execute latencies in Figure 3. We can see that the
new Algorithm 3 is significantly better than Algorithm 2
and that, in the common case, the latency of Algorithm 3
does not depend on D.

4.2 Size of prioritized and normal messages
Prioritized messages should be a small fraction of the
traffic, otherwise they become useless. We now analyze
whether that is the case with the new algorithms. Prior-
itized messages in Algorithms 1 and 3 have up to four
pieces of information: message type, key, timestamp,
and an accept bit indicating if the request is accepted or
rejected. The message type and accept bit are stored in
one byte. The timestamp is eight bytes, which is large
enough so that it does not wrap around. The key has vari-
able length, but is typically small, say 16 bytes. Adding
up, the size of a prioritized message is up to 25 bytes.
Each data message (which is not prioritized) has the pre-
ceding information and a value with several KBs, which
is orders of magnitude larger than a prioritized message.

This difference in size is advantageous. Let k be the
factor by which normal messages are larger than priori-
tized messages, and B be the bandwidth of a remote link.
Then clients can issue storage operations with peaks of
throughput equal to P = k×B without affecting the per-
formance of the system: at the peak throughput, the en-
tire remote link bandwidth is consumed by prioritized
messages, and their message delays are still d, so Al-
gorithms 1 and 3 perform as expected. Since k can be
large (with data values of size 1 KB, k ≈ 40), the benefit
is significant.

4.3 Fault tolerance

The new Algorithms 1 and 3 are fault tolerant: they toler-
ate up to f replica crashes. Even if a site disaster destroys
more than f replicas in a site, the algorithms safeguard
most of the data: only data written in a small window
of vulnerability is lost (data held by the temporary local
replicas but not yet propagated remotely). Furthermore,
the algorithms allow administrators to identify the lost
data quickly: these are the keys for which the remote
replicas store a timestamp but not the data itself.

5 Implementation
Vivace consists of 6000 lines of Java. Clients and servers
communicate using TCP. The system can be configured
to use any of the four algorithms of Section 3: the ABD
algorithm, Algorithm 1, Algorithm 2, and Algorithm 3.
We implemented the optimizations, in Section 3.4 of
avoiding the write-back phase and delegation to a replica,
for the experiments in Section 6.4. We did not imple-
ment the directory service: currently, the metadata for
containers is kept in a static configuration file. This does
not affect our performance evaluation, because metadata
lookups are rare due to caching.

6 Evaluation
We now evaluate Vivace. After describing the experi-
mental setup (Section 6.1), we validate the assumption
we made in Vivace that prioritized messages are feasible
and effective (Section 6.2). We then consider the per-
formance of the new algorithms of Vivace (Section 6.3).
Finally, we demonstrate the benefits of Vivace in a real
web application (Section 6.4).

6.1 Experimental setup

The experimental setup consists of machines in Ama-
zon’s EC2 and a private local cluster in Urbana-
Champaign. In EC2, we use extra large virtual machine
instances with 4 CPU cores and 15 GB of memory, in
two locations, Virginia and Ireland. We use the private
cluster for experiments that require changing the config-
uration of the network. The local cluster has three PCs
with 2.4 GHz Pentium 4 CPU, 1 GB of memory, and
an Intel PRO/100 NIC. The cluster is connected to the
Internet via a Cisco Catalyst 3550 router, which has 48
100 Mbps ports. The median round-trip latencies were
the following (in ms):

Local EC2 EC2
cluster Virginia Ireland

Local cluster <1 23 109
EC2 Virginia <1 93
EC2 Ireland <1

6.2 Message prioritization schemes
Vivace assumes the existence of an effective mechanism
to prioritize messages in the network. In this section,
we examine whether this assumption holds. We consider
network-based and host-based schemes to achieve pri-
oritized messages, and evaluate their overhead and ef-
fectiveness in the presence of congestion. The network-
based scheme relies on prioritization support by network
devices, while the host-based scheme implements pri-
oritization in software using a dedicated server. Both
schemes can be set up within a site, without assumptions
on the external network that connects sites.4

For each scheme, we answer four questions: What is
required to use it? How to set it up? What is the over-
head? How effective is it?

Network-based solution
What is required? The scheme requires devices and ap-
propriate protocols that support prioritization of mes-
sages. Prioritized messages are available at several lev-
els:

Layer Device Mechanism
IP IP router RFC 2474 (DiffServ)
MPLS VPN Edge router RFC 2474 (DiffServ)
Ethernet Switch IEEE 802.1p

One way to connect sites is via a private leased line,
using a modem and an IP router or switch at each end of
the line. An alternative cost-effective scheme is to use
VPNs, such as MPLS VPNs.

With private leased lines, prioritization is possible via
IP or Ethernet solutions. IP solutions were first available
using the Type of Service (ToS) bits in the IP header,
which were later superseded by the 6-bit DSCP field in
IP DiffServ. The DSCP field defines a traffic class for
each IP packet, which can be used to prioritize traffic at
each network hop. Ethernet solutions are based on the
IEEE 802.1p standard, which uses a 3-bit PCP field on
an Ethernet frame. Such solutions are available even on
commodity low-end switches, where a use case is to pri-
oritize video or real-time gaming traffic in a home net-
work connected to a broadband modem.

With MPLS VPNs, prioritization is available via IP
prioritization at the edge routers [1].

How to set it up? The simpler and lower-end devices
are configured via web-based user interfaces. Higher-end
routers and switches have configuration interfaces based
on command lines. We set up traffic prioritization in the
Cisco Catalyst 3550 router by configuring it to classify
packets based on DSCP bits at ingress and place them
accordingly into egress priority queues [8, Chapter 28].

4Another scheme is TCP Nice [53], which de-prioritizes traffic. We
can conceptually prioritize messages by de-prioritizing all others us-
ing TCP Nice, but doing so requires de-prioritizing traffic outside our
system. This could be hard and it fails if other systems use UDP.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (s)

Normal Ping Prioritized Ping

Figure 4: Round-trip delay for regular and prioritized
messages using a router with IP DiffServ support.

What is the overhead? We evaluate the overhead of the
scheme, by configuring the Cisco Catalyst 3550 router in
the local cluster. We measured the round-trip latency of
null requests sent from the cluster to EC2 (Ireland), with
DSCP bit prioritization enabled and disabled. We found
no detectable differences, indicating that the overhead of
the prioritization mechanism in the IP router is small.

How effective is it? We perform a simple experiment:
two clients in the private cluster periodically measure the
round-trip time of their established TCP connection to a
machine outside the cluster. One client was configured
to set the DSCP field to a priority value, while the other
used the default DSCP field. 10 seconds into the exper-
iment, two machines in the cluster generate congestion
by running iperf, which sends UDP traffic at a rate of
60 Mbps each to two machines. The congestion con-
tinues for 20 seconds and then stops. Figure 4 shows
the round-trip latency observed by both clients. We can
see that prioritized messages are effective: their latency
is unaffected by the congestion. In contrast, conges-
tion causes regular messages to be dropped, which trig-
gers TCP retransmissions—sometimes multiple times—
causing large delays due to the TCP back-off mechanism.

Host-based solution
What is required? This scheme requires one or more
proxy machines to handle traffic between sites. Mes-
sages targeted to machines outside the local site are
first sent to a local proxy machine. The proxy for-
wards the message to a proxy machine in the remote site,
which finally forwards the message to the destination. In
each proxy, packets are prioritized by placing them into
queues according to their DSCP bits. The proxy is a ded-
icated Linux instance, running SOCKS Dante server pro-
cesses [4] and using outbound priority queues configured
with the HTB packet scheduler in the tc tool [7].

How to set it up? To reduce internal traffic at a site,
the proxy is placed close to the site’s external network
connection. Machines are configured to use the proxy,
using the SOCKS protocol.

What is the overhead? We measure the round-trip la-
tency of null requests sent between the Virginia and Ire-
land EC2 locations, with and without the proxy, to deter-
mine the extra latency added by the proxy. There was no

Cisco Catalyst 3550

Replica 4 +

Client +

Replica 1

iperf client A

iperf client B

Replica 5 +

Replica 2

Replica 3

iperf server A,B

Local

Illinois Ireland

Amazon

Figure 5: Network setup.

congestion in the network. Without the proxy, the aver-
age round-trip latency is 93 ms, while with the proxy, it
is 99 ms. The overhead of the proxy is dwarfed by the
much larger network latencies across sites.

How effective is it? To evaluate the scheme, we place
four machines at each of two EC2 locations (Virginia,
Ireland). One machine runs the proxy, one runs two
clients, and two run iperf to generate congestion. The
experiment is the same as for the network-based solu-
tion, except that it uses an extra machine for the proxy,
and it uses machines in EC2 only. The results are also
similar and demonstrate that the prioritized messages are
quite effective (not shown).

Applicability of each solution
The host and network-based solutions are applicable to a
small or medium private data center connected by leased
lines or MPLS VPNs. Larger data centers or the cloud
have larger external bandwidths, and so the host-based
scheme creates a bandwidth bottleneck at the proxy,
making the network-based scheme a better alternative.

6.3 Storage algorithms

In the next experiments, we consider the performance of
the new storage algorithms in Vivace. To do so, we con-
figure Vivace to use either prior algorithms (ABD and
Algorithm 2) or the new algorithms (Algorithm 1 and 3).
The goal is to understand what are the overheads and
benefits of the new algorithms.

The experimental setup consists of five server pro-
cesses placed in two sites—the local cluster and EC2
Ireland—as shown in Figure 5. Replicas 1, 2, 3 are used
as the replica set, with replica 1 placed locally and repli-
cas 2 and 3 placed in Ireland. The local replicas consist
of replicas 1, 4, 5, which are in the local cluster. The
client is co-located with replica 1. We use the network-
based prioritization scheme available in the IP router.

In each experiment, the client issues a series of opera-
tions of a given type on a 1 KB object for 20 seconds, and
we measure the latency of those operations. For the RW
algorithms (ABD and Algorithm 1), the operation types
are read or write; for the RMW algorithms (Algorithms 2

Algorithm Operation Min latency Max latency
ABD Algorithm read 221 228

(prior work) write 111 120
Algorithm 1 read 221 231

(new) write 113 121
Algorithm 2 execute 221 231
(prior work)
Algorithm 3 execute 222 231

(new)

Figure 6: Round-trip latency with no congestion (in ms).

and 3), the operation type is execute.

6.3.1 Overhead under no congestion
The new algorithms are designed by deconstructing some
existing algorithms to prioritize critical fields in their
messages. This deconstruction increases the number of
communication phases of the algorithms, and raises the
question of whether they would perform worse than prior
algorithms. To evaluate this point, we run an experiment
where there is no congestion in the network and we com-
pare performance of the different algorithms.

The results are shown in Figure 6. We find that the
algorithms perform similarly, which indicates that the
overhead of the extra phases in the new algorithms are
not significant. This result confirms the analysis in Sec-
tion 4.1 when δ � d.

6.3.2 Benefit under congestion
In the next experiment, we evaluate the performance of
the algorithms under network congestion to understand
the benefits of prioritizing critical messages in the new
algorithms.

The results are shown in Figure 7. Note that the x-
axis has a logarithmic scale. As can be seen, the new
algorithms perform significantly better than the equiva-
lent prior algorithms. The continuous congestion causes
large latencies in the execution of the prior algorithms.
The difference in median latency is over 300ms for all
operations. Perhaps more significantly, the differences
in the higher percentiles are large. The difference at the
90th percentile for read and write operations is nearly
1s, while for the execute operation it is over 1s. This is
particularly relevant because online services tend to have
stringent latency requirements at high percentiles: for in-
stance, in Amazon’s platform, the latency requirements
are measured at the 99.9th percentile [24]. With the use
of priority messages, the new algorithms are better suited
for satisfying such requirements.

6.4 Effect on a web application
We now consider how the new algorithms in Vivace can
benefit a real web application. We use Vivace as the
storage system for a Twitter-clone called Twissandra [2],
which is originally designed to use the Cassandra [3]
storage system. We replace Cassandra with Vivace, to

 0
 20
 40
 60
 80

 100

 100 1000 10000

%
 o

f
R

e
q

u
e

s
ts

 (
c
d

f)

Request Latency (ms)

ABD Algorithm Algorithm 1

(a) Read Algorithms

 0
 20
 40
 60
 80

 100

 100 1000 10000

%
 o

f
R

e
q

u
e

s
ts

 (
c
d

f)

Request Latency (ms)

ABD Algorithm Algorithm 1

(b) Write Algorithms

 0
 20
 40
 60
 80

 100

 100 1000 10000

%
 o

f
R

e
q

u
e

s
ts

 (
c
d

f)

Request Latency (ms)

Algorithm 2 Algorithm 3

(c) Execute Algorithms

Figure 7: Latency of Vivace under congestion.

obtain a system that employs the new algorithms with
prioritization. More precisely, Twissandra uses Cassan-
dra to store account settings, tweets, follower lists, and
timelines. In the modified Twissandra, we store account
settings and tweets in Vivace RW objects, and we store
follower lists and timelines in Vivace RMW objects.

We evaluate the benefit of Vivace’s algorithms, by
measuring the latency of common user operations in
Twissandra. As in Section 6.3.2, we configure Vivace
to use the prior and new algorithms, and compare the
difference in performance.

We run the experiments with two sites—the local clus-
ter and EC2 Ireland—using the IP router to provide
network-based prioritization. A load generator issues a
sequence of 200 requests to Twissandra of a given type,
one request at a time. We consider three request types:
(R1) post a new tweet, (R2) read the timeline of a sin-
gle user, and (R3) read the timeline of a user’s friends.
Each of these application requests result in multiple Vi-
vace requests. We measure the latency it takes to process
each request while the network is congested with back-
ground traffic generated by two machines running iperf
(as in other experiments).

The results are shown in Figure 8. As can be seen,
when Vivace is configured to use the new algorithms, the
system is much more resilient to congestion. With the
prior algorithms, latency for user operations often grew
well above 1 second, with a median latency of 2.0s, 1.2s,
2.0s, and maximum latency of 14.1s, 11.3s, 11.9s, for

 0
 20
 40
 60
 80

 100

 100 1000 10000 100000

%
 o

f
R

e
q

u
e

s
ts

 (
c
d

f)

Request Latency (ms)

Prior Algos New Algos

(a) Post Tweet (R1)

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000%
 o

f
R

e
q

u
e

s
ts

 (
c
d

f)

Request Latency (ms)

(b) Read User Timeline (R2)

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000%
 o

f
R

e
q

u
e

s
ts

 (
c
d

f)

Request Latency (ms)

(c) Read Friends Timeline (R3)

Figure 8: Latency of Twissandra-Vivace under conges-
tion.

requests of types R1, R2, R3, respectively. In contrast,
with the new algorithms, the median latency was 0.3s,
0.4s, 0.5s, and maximum latency was 0.4s, 0.6s, 0.8s, for
the same request types, respectively—showing a signifi-
cant improvement of using the new algorithms of Vivace
under congestion.

7 Related Work
There has been a lot of work on distributed storage sys-
tems in the context of local-area networks (e.g., [34, 28,
48, 55, 26, 14, 20, 6, 31, 12, 39, 52, 41]). In contrast,
we are interested in a geo-distributed data center setting,
which comprises of multiple local-area networks con-
nected by long-distance links. There is also work on dis-
tributed file systems in the wide area [54, 44, 49], which
is a setting that in some ways resembles geo-distributed
systems. These distributed file systems provide a weak
form of consistency that requires conflict resolution [44]
or other techniques to handle concurrent writes at dif-
ferent locations [54, 49]. In contrast, we provide strong
consistency (linearizability), and our focus is on per-
forming well despite congestion of remote links. Dy-
namo [24] is a key-value storage system where replicas
can be located at multiple data centers, but it provides
only relaxed consistency and applications need to deal
with conflicts. Cassandra [3] is a storage system that
combines the design of Dynamo [24] with the data model
of BigTable [20]; like Dynamo, Cassandra provides re-

laxed consistency. PNUTS [23] is a storage system for
geo-distributed data centers, but it too resorts to the tech-
nique of providing relaxed consistency to address per-
formance problems. COPS [40] is a key-value storage
system for geo-distributed data centers, which provides a
consistency condition that is stronger than eventual con-
sistency but weaker than strong consistency, because it
allows stale reads.

There has been theoretical work on algorithms for
read-write atomic objects or arbitrary objects (e.g., [29,
13, 30, 47, 43]). There has also been practical work on
Byzantine fault tolerance (e.g., [19, 9, 35, 22, 32]) which
considers the problem of implementing a service or state
machine that can tolerate Byzantine failures. These al-
gorithms were not designed with the geo-distributed data
center setting in mind. In this setting they would see long
latencies under congestion, because processes send large
messages across long-distance links in the critical path.

In the context of wide-area networks, there have been
proposals for more efficient protocols for implementing
state machines. The Steward system [15] builds Byzan-
tine fault tolerant state machines for a system with mul-
tiple local-area networks connected by wide-area links.
They use a hierarchical approach to reduce the message
complexity across the wide-area. Mencius [42] is an-
other system that builds a state machine over the wide-
area. The use of a multi-leader protocol and skipping
allows the system to balance message load according to
network conditions. Hybrid Paxos [25] is another way
to reduce message complexity. It relies on the knowl-
edge of non-conflicting commands as specified by the
application [46, 10, 38]: for instance, commands known
to be commutative need not be ordered across replicas,
allowing for faster processing. Steward, Mencius, and
Hybrid Paxos can reduce or amortize the bandwidth con-
sumed by messages across remote links. Yet, the systems
can experience high latency if congestion on these links
reduces the available bandwidth to below the message
load. Our work addresses this problem by deconstruct-
ing algorithms and prioritizing a small amount of critical
information needed in the critical path. As long as there
is enough bandwidth available for the small fraction of
load produced by prioritized messages, bursts of conges-
tion will not slow down our algorithms.

PRACTI [18] separates data from control informa-
tion to provide partial replication with flexible consis-
tency and data propagation. Vivace also separates cer-
tain critical fields in messages, but this is done differently
from PRACTI for many reasons. First, Vivace has a dif-
ferent purpose, namely, to improve performance under
congestion. Second, Vivace uses different algorithms,
namely, algorithms based on majority quorum systems,
while PRACTI is based on the log exchange protocol of
Bayou [51]. Third, Vivace provides a different storage

service to clients, namely, a state machine [50], while
PRACTI provides a more limited read-write service.

Megastore is a storage system that replicates data syn-
chronously across multiple sites. Unlike Vivace, Mega-
store supports some types of transactions, but it has no
mechanisms to cope with cross-site congestion.

Other related work includes peer-to-peer storage sys-
tems, which provide weak consistency guarantees rather
than linearizability.

8 Conclusion
In this paper, we presented Vivace, a distributed key-
value storage system that replicates data synchronously
across many sites, while being able to cope with conges-
tion of the links connecting those sites. Vivace relies on
two novel algorithms that can overcome congestion by
prioritizing a small amount of critical information. We
believe that the volume of data across data centers will
increase in the future, as more web applications become
globalized, which will worsen the problem of conges-
tion across sites. But even if that does not happen, Vi-
vace will still be useful, by allowing remote links to be
provisioned less aggressively. More broadly, we believe
that geo-distributed systems that make judicious use of
prioritized messages will become more relevant, not just
for storage systems as we considered here, but also in a
wider context.

References
[1] http://www.cisco.com/en/US/prod/collateral/

iosswrel/ps6537/ps6557/prod_white_

paper0900aecd803e55d7.pdf as of Oct 2011.
[2] https://github.com/twissandra/twissandra, as of

Oct 2011.
[3] http://cassandra.apache.org, as of Oct 2011.
[4] Dante – proxy communication solution.

http://www.inet.no/dante/.
[5] Global MPLS VPN pricing guide.

http://shop2.sprint.com/assets/pdfs/en/

solutions/worldwide/taiwan_global_mpls_vpn.pdf

as of Oct 2011.
[6] The Hadoop distributed file system: Architecture and

design. http://hadoop.apache.org/core/docs/
current/hdfs_design.html.

[7] HTB Linux queuing discipline manual—user guide. http:
//luxik.cdi.cz/~devik/qos/htb/manual/userg.htm.

[8] Catalyst 3550 Multilayer Switch Software Configuration
Guide, Cisco IOS Release 12.1(13)EA1. Mar. 2003.

[9] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable Byzantine
fault-tolerant services. In SOSP, Oct. 2005.

[10] M. K. Aguilera, C. Delporte-gallet, H. Fauconnier, and
S. Toueg. Thrifty generic broadcast. In DISC, Oct. 2000.

[11] M. K. Aguilera, S. Frolund, V. Hadzilacos, S. L. Horn, and
S. Toueg. Abortable and query-abortable objects and their
efficient implementation. In PODC, 2007.

[12] M. K. Aguilera, W. Golab, and M. A. Shah. A practical
scalable distributed B-tree. VLDB, 1(1), Aug. 2008.

[13] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer.
Dynamic atomic storage without consensus. In PODC,
Aug. 2009.

[14] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. TOCS, 27(3), Nov. 2009.

[15] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev,
C. Nita-Rotaru, J. Olsen, and D. Zage. Scaling Byzantine
fault-tolerant replication to wide area networks. In DSN,
2006.

[16] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. JACM, 42(1), Jan.
1995.

[17] J. Baker et al. Megastore: Providing scalable, highly
available storage for interactive services. In Conference on
Innovative Data Systems Research, Jan. 2011.

[18] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng. PRACTI
replication. In NSDI, 2006. Extended version available at
http://www.cs.utexas.edu/users/dahlin/papers/

PRACTI-2005-10-extended.pdf.
[19] M. Castro and B. Liskov. Practical Byzantine fault

tolerance. In OSDI, Feb. 1999.
[20] F. Chang et al. Bigtable: A distributed storage system for

structured data. In OSDI, Nov. 2006.
[21] G. Chockler and D. Malkhi. Active disk paxos with

infinitely many processes. Distributed Computing, 18(1),
July 2005.

[22] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making Byzantine fault tolerant systems
tolerate Byzantine faults. In NSDI, Apr. 2009.

[23] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data serving
platform. In VLDB, Aug. 2008.

[24] G. DeCandia et al. Dynamo: Amazon’s Highly Available
Key-value Store. In SOSP, 2007.

[25] D. Dobre, M. Majuntke, M. Serafini, and N. Suri. HP:
Hybrid paxos for WANs. In European Dependable
Computing Conference, Apr. 2010.

[26] J. R. Douceur and J. Howell. Distributed directory service
in the Farsite file system. In OSDI, Nov. 2006.

[27] E. Gafni and L. Lamport. Disk paxos. Distributed
Computing, 16(1), Feb. 2003.

[28] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP, Oct. 2003.

[29] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II:
Rapidly reconfigurable atomic memory for dynamic
networks. In DSN, June 2003.

[30] S. Gilbert, N. A. Lynch, and A. A. Shvartsman. RAMBO: A
robust, reconfigurable atomic memory service for dynamic
networks. Distributed Computing, 23(4), Dec. 2010.

[31] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable distributed data structures for internet
service construction. In OSDI, 2000.

[32] J. Hendricks. Efficient Byzantine fault tolerance for
scalable storage and services. Technical Report
CMU-CS-09-146, Carnegie Mellon University, School of
Computer Science, July 2009.

[33] M. P. Herlihy and J. M. Wing. Acm toplas. ACM Trans.
Program. Lang. Syst., 12, July 1990.

[34] J. H. Howard et al. Scale and performance in a distributed
file system. TOCS, 6(1), Feb. 1988.

[35] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative Byzantine fault tolerance. In SOSP,
Oct. 2007.

[36] T. Kraska, G. Pang, M. J. Franklin, and S. Madden. MDCC:
Multi-Data Center Consistency. 1203.6049, Mar. 2012.

[37] L. Lamport. The part-time parliament. TOCS, 16(2), May
1998.

[38] L. Lamport. Generalized consensus and Paxos. Technical
Report MSR-TR-2005-33, Microsoft Research, Mar. 2005.

[39] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In ASPLOS, Oct. 1996.

[40] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen.
Don’t settle for eventual: Stronger consistency for
wide-area storage with COPS. In SOSP, Oct. 2011.

[41] P. Mahajan et al. Depot: Cloud storage with minimal trust.
In OSDI, 2010.

[42] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
building efficient replicated state machines for wans. In
OSDI, 2008.

[43] J.-P. Martin and L. Alvisi. A framework for dynamic
Byzantine storage. In DSN, June 2004.

[44] L. B. Mummert, M. R. Eblig, and M. Satyanarayanan.
Exploiting weak connectivity for mobile file access. In
SOSP, Dec. 1995.

[45] J. Nielsen. Designing Web Usability: The Practice of
Simplicity. New Riders Publishing, 1999.

[46] F. Pedone and A. Schiper. Handling message semantics
with generic broadcast protocols. Distributed Computing,
15(2), Apr. 2002.

[47] R. Rodrigues and B. Liskov. Rosebud: A scalable
Byzantine-fault-tolerant storage architecture. Technical
Report TR/932, MIT LCS, Dec. 2003.

[48] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. Spence.
FAB: building distributed enterprise disk arrays from
commodity components. In ASPLOS, Oct. 2004.

[49] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mhalingam.
Taming aggressive replication in the Pangaea wide-area file
system. In OSDI, Dec. 2002.

[50] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach : A tutorial. ACM Computing
Surveys, 22(4), Dec. 1990.

[51] D. B. Terry et al. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In SOSP, Dec.
1995.

[52] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. In SOSP, Oct. 1997.

[53] A. Venkataramani, R. Kokku, and M. Dahlin. TCP nice: A
mechanism for background transfers. In OSDI, Dec. 2002.

[54] R. Y. Wang and T. E. Anderson. xFS: A wide area mass
storage file system. In Workshop on Workstation Operating
Systems, Oct. 1993.

[55] S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In OSDI, Nov. 2006.

