
Partial Synchrony Based on Set Timeliness
[Extended Abstract]

Marcos K. Aguilera
Microsoft Research Silicon Valley

Mountain View, CA, USA

Carole Delporte-Gallet
∗

Université Paris 7
Paris, France

Hugues Fauconnier
∗

Université Paris 7
Paris, France

Sam Toueg
†

University of Toronto
Toronto, ON, Canada

ABSTRACT
We introduce a new model of partial synchrony for read-write shared
memory systems. This model is based on the notion of set timeli-
ness—a natural and straightforward generalization of the seminal
concept of timeliness in the partially synchrony model of Dwork,
Lynch and Stockmeyer [8].

Despite its simplicity, the concept of set timeliness is power-
ful enough to describe the first partially synchronous system for
read/write shared memory that separates consensus and set agree-
ment: we show that this system has enough timeliness for solving
set agreement but not enough for solving consensus.

Set timeliness also allows us to define a family of partially syn-
chronous systems of n processes, denoted Sk

n (1≤k≤n−1), which
closely matches the family of k-anti-Ω failure detectors that were
recently shown to be the weakest failure detectors for the k-set
agreement problem: We prove that for 1≤k≤n−1, Sk

n is syn-
chronous enough to implement k-anti-Ω but not enough to imple-
ment (k−1)-anti-Ω.

The results above show that set timeliness can be used to study
and compare the partial synchrony requirements of problems that
are strictly weaker than consensus.

Categories and Subject Descriptors
B.3.2 [Memory structures]: Design Styles—Shared memory; C.2.4
[Computer-Communication Networks]: Distributed Systems—
Distributed applications; D.4.1 [Operating systems]: Process Man-
agement—Concurrency; F.1.1 [Computation by Abstract Devices]:
Models of Computation; F.2.m [Analysis of Algorithms and Prob-
lem Complexity]: Miscellaneous

General Terms
Algorithms, Design, Theory

∗This author was supported by grant ANR-08-VERSO-SHAMAN.
†This author was partially supported by the National Science and
Engineering Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’09, August 10–12, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-396-9/09/08 ...$10.00.

Keywords
Set agreement, consensus, partial synchrony, timeliness, algorithms,
failure detectors, impossibility, bivalency

1. INTRODUCTION
The concept of partial synchrony, introduced in the seminal work

of Dwork, Lynch and Stockmeyer [8], is based on the notion of
timeliness, e.g., an upper bound Φ on relative process speeds: “in
any contiguous interval containing Φ real-time steps, every correct
process must take at least one step. This implies no correct pro-
cess can run more than Φ times slower than another.” In the par-
tially synchronous systems in [8], all the processes are (eventually)
timely relative to each other.

To define partially synchronous systems that are weaker than
those in [8], but are still strong enough to solve consensus, the
above notion of timeliness was later refined by considering the
timeliness of each pair of processes individually. In particular,
for shared memory systems, one can define the concept of process
timeliness, which compares the speed of a single process p to the
speed of another process q, as follows: p is timely with respect to q
if, for some integer i, every interval that contains i steps of q con-
tains at least one step of p [3]. Process timeliness, however, cannot
be used to study problems that are weaker than consensus such as
set agreement: the existence of a single process p that is timely
with respect to another process q is sufficient to solve consensus in
read-write shared memory systems where at most one process may
crash (this follows from results in [1, 3]). In fact, all the partially
synchronous systems that were previously proposed for message-
passing and read-write shared memory are strong enough to solve
consensus (under some condition on the number of processes that
may crash).

In this paper, we propose a simple generalization of process time-
liness, called set timeliness, and show that it can be used to study
and compare the partial synchrony requirements of problems that
are weaker than consensus. Intuitively, this generalization is ob-
tained by considering a set of processes P in the system as a single
entity, i.e., as a “virtual process” p that takes a step whenever any
process in P takes a step, and then use the definition of process
timeliness on such virtual processes. So, a set of processes P is
timely with respect to another set of processes Q if, for some inte-
ger i, every interval that contains i steps of processes in Q contains
at least one step of some process in P . As we will see below, the
processes in P may not be individually timely (i.e., the speed of
each process in P may fluctuate beyond any bound), but when they
are viewed as a single (cooperating) process they may be timely. So
a set of processes may be able to overcome the speed fluctuations

= p1
= p2 = q

= q= p (p or p1 2)

...

...

Figure 1: Example of set timeliness. Top shows a schedule with three processes, p1, p2, q, in which neither p1 nor p2 is timely with
respect to q. Bottom shows the same schedule where p1 and p2 are considered as a single virtual process p, and p is timely with
respect to q.

of individual members of the set, by working together as a timely
virtual process.

A simple example, depicted in Figure 1, illustrates the definition
of set timeliness. Consider the synchrony of processes p1 and p2

with respect to process q in schedule S = [(p1 · q)i · (p2 · q)i]∞i=1.
Note that p1 is not timely with respect to q in S, because there are
longer and longer sequences of consecutive steps in S where q takes
more and more steps while p1 takes no step at all: intuitively, there
are longer and longer periods where p1 is very slow with respect
to q. Similarly, p2 is not timely with respect to q in S. But if we
consider p1 and p2 as a single virtual process p, then the above
schedule S now becomes (p · q)∞, and the virtual process p is
indeed timely with respect to q. In other words, if p1 and p2 are
considered as a single entity (a set of two cooperating processes),
then together they are timely with respect to q. In our model of
partial synchrony, we say that the set of processes {p1, p2} is timely
with respect to the set {q}. Similarly, a set of processes {p1, p2}
is timely with respect to a set {q1, q2, q3} if, when we remove all
the indices from these processes, the resulting virtual process p is
timely with respect to virtual process q.

In this paper, we show that set timeliness can be used to find
partially synchronous systems for sub-consensus tasks. In partic-
ular, we use it to define the first partially synchronous system for
read/write shared memory that separates consensus and set agree-
ment: we prove that this system is timely enough for solving set
agreement but not enough for solving consensus. Set timeliness
also allows us to define a family of partially synchronous systems of
n processes, denoted Sk

n (1 ≤ k ≤ n− 1), which closely matches
the family of k-anti-Ω failure detectors that were shown to be the
weakest failure detectors for the k-set agreement problem [4,7,12]:
we prove that for 1 ≤ k ≤ n − 1, Sk

n is synchronous enough to
implement k-anti-Ω but not enough to implement (k − 1)-anti-Ω.
Note that, since k-set agreement can be solved with k-anti-Ω, this
implies that it can be solved in system Sk

n.
The definition of system Sk

n is very simple: it is a read/write
shared memory system of n processes where, in every schedule,
there is at least one set of processes of size k that is timely with
respect to the set of all processes in the system.

Our work is related to results in the IIS and IRIS models [11,20,
21]. We discuss this and other related work in Section 8.

Roadmap. This paper is organized as follows. In Section 2, we
define the notion of set timeliness and some partially synchronous
models that are based on it. In Section 3, we describe the prob-
lems and failure detectors that we consider. In Section 4, we show
that consensus cannot be solved in system Sn−1

n . In Section 5, we
explain why set agreement is solvable in system Sn−1

n . In Sec-
tion 6, we show that failure detector k-anti-Ω can be implemented
in system Sk

n. In Section 7, we show that k-anti-Ω cannot be im-
plemented in system Sk+1

n . In Section 8, we discuss related work.

2. MODEL
We consider a shared-memory system with n processes Πn =
{1, . . . , n}, which can communicate with each other via some (pos-
sibly infinite) set Ξ of shared registers.

A schedule S (in Πn) is a finite or infinite sequence of processes
(in Πn). A step of a schedule is an element of S. Given a finite
schedule S and a schedule S′, we denote by S ·S′ the concatenation
of S and S′. Given an infinite schedule S, a process p is correct in
S if there are infinitely many occurrences of p in S.

2.1 Set timeliness
In what follows, A and B are sets of processes in Πn and S is a

schedule in Πn.

Definition 1 A is timely with respect to B in S if there is an integer
i such that every sequence of consecutive steps of S that contains i
occurrences of processes in B contains a process in A.

Definition 2 A is timely in S if A is timely with respect to Πn

in S.

From the above definitions, we have the following:

Observation 3 A is timely in S if and only if there is an integer
i such that every sequence of i consecutive steps in S contains a
process in A.

The definition of set timeliness given above (Definition 1) is a
direct generalization of the definition of process timeliness given
in [3]. In fact, Definition 1 can be used to define process timeliness:
A process p is timely with respect to a process q in S if set {p} is
timely with respect to set {q} in S.

2.2 Systems and partially synchronous
systems

A system may be defined by some properties, e.g., timeliness
properties, of its schedules. So we define a system S as a tuple
S = (Πn, Ξ, Scheds) where Scheds is a set of schedules; intu-
itively, Scheds is the set of schedules that are possible in system S.

In this paper we consider two families of partially synchronous
systems: for each 1 ≤ k ≤ n, Sk

n is the system where at least one

set of processes of size k is timely, and Sk
n is the system where all

the sets of processes of size k are timely.1 More precisely, for every
1 ≤ k ≤ n, let Schedsk

n be the set of schedules S in Πn such that at
least one set of processes of size k in Πn is timely in S. Similarly,

for every 1 ≤ k ≤ n, let Scheds
k
n be the set of schedules S in Πn

such that every set of processes of size k in Πn is timely in S. We

define Sk
n = (Πn, Ξ, Schedsk

n) and Sk
n = (Πn, Ξ, Scheds

k
n).

1To strengthen our results, we will use Sk
n when we give algorithms

and Sk
n when we prove impossibility results.

2.3 Algorithms and runs
An algorithm A in a system S consists of a set of n (infinite or

finite) deterministic automata A1, . . . ,An. By abuse of notation,
we identify a process with its automaton. Each process executes by
taking steps. In each step, a process p can read or write a shared
register and change state (according to p’s state transition function
in Ap).

Below, A denotes an algorithm, S = (Πn, Ξ, Scheds) denotes
a system, and pref(Scheds) denotes the set of all finite prefixes of
schedules in Scheds. A configuration of A in S indicates the state
of each process and register. A run R of A in S is a tuple R =
(I, S,A) where I is an initial configuration of A in S and S is a
schedule in Scheds. A partial run P of A in S is a tuple P =
(I, S,A) where I is an initial configuration of A in S and S is a
schedule in pref(Scheds). The configuration at the end of P is the
state of each process and register after they have taken steps from
I in the order indicated by S and according to the state transitions
ofA. Given a schedule S′ where S ·S′ ∈ pref(Scheds), we denote
by P ·S′ the partial run (I, S ·S′,A) ofA in S. A continuation of
P in S is a run R = (I, S′,A) ofA in S where S is a prefix of S′.

3. PROBLEMS AND FAILURE
DETECTORS

3.1 Consensus, set agreement, and
k-set agreement

In the k-set agreement problem (for 1≤k≤n), each process has
an initial value and must decide on a value such that

• (Uniform k-agreement) Processes decide on at most k dis-
tinct values;
• (Uniform validity) If some process decides on v then v is the

initial value of some process; and
• (Termination) Every correct process eventually decides on

some value.

The (n−1)-set agreement problem is also called simply the set
agreement problem. The 1-set agreement problem is also called the
consensus problem. The binary consensus problem is the consensus
problem such that the initial values of processes are in {0, 1}.
3.2 Failure detectors anti-Ω and k-anti-Ω

Failure detectors [6] are basic tools of fault-tolerant distributed
computing that can be used to solve fundamental problems such as
consensus, set agreement, and atomic broadcast. In this paper, we
consider the family of k-anti-Ω failure detectors [22] for 1≤k≤n.
With k-anti-Ω, every process p has a local variable fdOutputp that
holds a set of n−k processes, such that the following property
holds: if some process is correct then there exists a correct pro-
cess c and a time after which, for every correct process p, c is not
in fdOutputp. Note that (n−1)-anti-Ω is also called simply anti-Ω,
and 1-anti-Ω is equivalent to the Ω failure detector [6].

4. IMPOSSIBILITY OF CONSENSUS
IN SYSTEM Sn−1

n

We now show that consensus cannot be solved in Sn−1
n —the

partially synchronous system of n processes where at least one set
of processes of size n−1 is timely. In fact, we prove that consensus
cannot be solved even if every set of processes of size n − 1 is
timely, i.e., it cannot be solved even in Sn−1

n .2

2We show this impossibility result for every n ≥ 3. For n = 2,
consensus is solvable in S1

2 [3].

We now explain the general idea of how we prove this result. The
proof is a modification of the well-known proof of impossibility of
consensus in asynchronous systems [10,16]. That proof considers a
purported algorithmA for consensus and then constructs a run Rbad

of A in which processes never decide—a contradiction that shows
that A does not exist. The construction of Rbad uses a bivalency
argument. Roughly speaking, a partial run is bivalent if it has two
continuations in which processes decide different values. Note that,
in a bivalent partial run, no process has decided. Moreover, one can
show that (a) there is some bivalent initial partial run P0 of A, and
(b) a bivalent partial run of A can be extended one step at a time
into increasingly larger bivalent partial runs. In the limit, we obtain
an infinite run Rbad in which processes never decide.

The construction of [10, 16], however, does not work to show
our result. This is because Rbad may not belong to Sn−1

n . To be-
long to Sn−1

n , we would like Rbad to have some synchrony. In
particular, we must construct Rbad so that every set of size n − 1
is timely. However, we cannot aim for too much synchrony, other-
wise consensus becomes solvable—for instance, there are consen-
sus algorithms in the partially synchronous model of [1]. Thus, in
constructing Rbad, we need to find the right balance of timeliness.

We achieve this balance via the notion of a move. A move is
a schedule of two steps by distinct processes (in later sections we
extend this notion), and we consider runs that consist of finite or in-
finite sequences of moves such that the second process in a move is
different from the first process in a subsequent move. We show that
in such runs, every set of processes of size n− 1 is timely, so these
runs are in Sn−1

n . Moreover, it turns out that we can still carry out
the bivalency argument using these runs alone: there exists some
bivalent initial partial run and this run can be extended one move
at a time, while keeping the run bivalent. This gives us the needed
bad run Rbad in Sn−1

n .
We now state the precise result and give the detailed proof.

Theorem 4 For every n ≥ 3, there is no algorithm that solves
binary consensus in Sn−1

n .

We prove Theorem 4 by contradiction. Let n ≥ 3 and suppose
that there is an algorithm A that solves binary consensus in Sn−1

n .
We now consider the behavior of A in a system, denoted S, in

which no consecutive steps are of the same process. We first show
that all runs of A in S are also in Sn−1

n . We then show that there
is a run of A in S such that processes never decide—which is a
contradiction.

Definition 5

• Scheds = {S | S is a schedule in Πn such that S has no two
consecutive steps by the same process }.
• S is the system S = (Πn, Ξ, Scheds).

Observation 6 For every infinite schedule S ∈ Scheds, there are
at least two correct processes in S.

Lemma 7 For every schedule S ∈ Scheds, every set of processes
of size n− 1 is timely in S.

PROOF. Consider a schedule S ∈ Scheds, and let A be a set of
processes of size n − 1 in Πn. By the definition of Scheds, every
two consecutive steps of S contain at least one process in A. By
Observation 3, A is timely in S.

Lemma 7 immediately implies the following:

Corollary 8 Scheds ⊆ Scheds
n−1
n .

Corollary 9 Every run of algorithmA in system S is also a run of
A in system Sn−1

n .

We now define the standard notion of bivalent and v-valent par-
tial runs with respect to the runs of algorithm A in system S.

Definition 10 Let P be a partial run of algorithm A in system S
and v ∈ {0, 1}. P is v-valent in S if, in every continuation of P in
S, no process decides a value other than v. P is bivalent in S if it
is not v-valent in S for any v ∈ {0, 1}.

Note that if a partial run P is bivalent then there are continuations
C0 and C1 of P such that some process decides 0 in C0 and some
process decides 1 in C1.

Henceforth in this section, a (partial) run refers to a (partial) run
of the algorithm A in system S. Moreover, when we say bivalent
or v-valent, for some v ∈ {0, 1}, we mean bivalent or v-valent in
system S.

Definition 11 Given two partial runs P and P ′, we say that P and
P ′ are indistinguishable by a process p if p has the same state in
the configurations at the end of P and P ′. We say that P and P ′

are indistinguishable by the shared registers if all shared registers
have the same state in the configurations at the end of P and P ′.

Lemma 12 There exists a partial run P that is bivalent.

PROOF. (Similar to a proof in [10]) Suppose by contradiction
that every partial run is v-valent for some v. Consider the par-
tial runs P0, P1, . . . , Pn with empty schedule such that, in Pi, the
initial value of processes 0, . . . , i is 0 and the initial value of pro-
cesses i + 1, . . . , n is 1. Then P0 is 0-valent and Pn is 1-valent.
Since for every i, Pi is either 0-valent or 1-valent, we can find some
j ≤ n− 1 such that Pj is 0-valent and Pj+1 is 1-valent. The initial
configurations of Pj and Pj+1 only differ in the state of process
j + 1. Let p and q be distinct processes different from j + 1 (p and
q exist because n ≥ 3) and consider the continuations C0 and C1

of Pj and Pj+1, respectively, in which p and q keep taking steps in
alternation (forever). Note that C0 and C1 are runs in S because no
two consecutive steps are of the same process. It is easy to see that
p and q go through the same sequence of states in C0 and C1, and
therefore they decide the same value in both continuations. How-
ever, they decide 0 in C0 since Pj is 0-valent, and they decide 1 in
C1 since Pj+1 is 1-valent—a contradiction.

We now define the notion of a move and then use sequences of
moves to obtain runs in system S = (Πn, Ξ, Scheds).

Definition 13 A move m consists of an ordered pair of processes
(p, q) with p �= q.

Observation 14 Any finite or infinite sequence of moves mom1 . . .
such that the second process of each move is different from the first
process of the subsequent move is a schedule in Scheds.

Definition 15 Given a partial run P , we say that move m = (p, q)
is applicable to P if the schedule of P is empty or if the last process
of P is different from p.

By Observation 14, we have

Observation 16 By successively applying (applicable) moves to a
partial run in S, we obtain a run in S.

Lemma 17 If a partial run P is bivalent then there exists a move
m applicable to P such that partial run P ·m is bivalent.

PROOF. Let P be a bivalent partial run. Suppose, by contradic-
tion, that for every move m applicable to P , P ·m is v-valent for
some v.

Since P is bivalent, there are two moves m0 and m1 such that
P ·m0 is 0-valent and P ·m1 is 1-valent.

Consider the following cases:
Case 1: m0 = (p, q) and m1 = (p, q′) for some p, q, and q′.

First, note that p �= q, p �= q′ and q �= q′. Now consider the step
that q and q′ take when m0 and m1 are applied to P . There are two
cases:

Case 1.1: q and q′ operate on different shared registers. Let
P0 = P · (p, q) · (q′, p) and P1 = P · (p, q′) · (q, p). Then
P0 and P1 are indistinguishable by every process and by
the shared registers, and P0 is 0-valent while P1 is 1-valent.
Consider a continuation C0 of P0 in which the move (q, p)
occurs repeatedly (and no other). Consider a continuation
C1 of P1 in which the move (q, p) occurs repeatedly (and no
other). In both continuations, processes q and p go through
the same set of states, and so they must decide the same value
in both continuations. However, since P0 is 0-valent, in C0

processes p and q decide 0, and since P1 is 1-valent, in C1

processes p and q decide 1—a contradiction.

Case 1.2: q and q′ operate on the same shared register V .
We consider the following sub-cases:

– If both q and q′ read V then let P0 = P · (p, q) · (q′, p)
and P1 = P · (p, q′) · (q, p). Then P0 and P1 are
indistinguishable by every process and by the shared
registers, and P0 is 0-valent while P1 is 1-valent. We
reach a contradiction as above.

– If q reads V and q′ writes V then let P0 = P · (p, q) ·
(q′, p) and P1 = P · (p, q′) · (q, p). Then P0 and P1

are indistinguishable by every process other than q and
by the shared registers, and P0 is 0-valent and P1 is
1-valent. We reach a contradiction as above by con-
sidering continuations in which the move (q′, p) occurs
repeatedly.

– If q writes V and q′ reads V , this case is analogous to
the one in which q reads V and q′ writes V .

– If both q and q′ write to V , consider the continuation
C0 of P ·(p, q) in which move (q′, p) occurs repeatedly,
and the continuation C1 of P ·(p, q′) in which the move
(p, q′) occurs repeatedly. The state of q′ at the end of
P · (p, q) is the same as in the end of P · p. Therefore,
when q′ takes its first step after P · (p, q) in C0, q′

writes to V the same value that it writes after q′ takes
its first step after P · p in C1. Thus, it is easy to see that
p and q′ go through the same sequence states in C0 and
C1, and therefore they decide the same value in both
continuations. However, in C0 they decide 0 and in C1

they decide 1—a contradiction.

Case 2: m0 = (p, q) and m1 = (p′, q′) for some p, q, and q′

such that p �= p′. Note that p �= q and p′ �= q′.
By assumption, P · (p, p′) is 0-valent or 1-valent. If P · (p, p′)

is 1-valent then, since P · (p, q) is 0-valent, we fall back to Case 1,
which leads to a contradiction. So P · (p, p′) is 0-valent.

By assumption, P · (p′, p) is 0-valent or 1-valent. If P · (p′, p)
is 0-valent then, since P · (p′, q′) is 1-valent, we fall back to Case
1, which leads to a contradiction. So P · (p′, p) is 1-valent.

Now consider the step that p and p′ take when (p, p′) and (p′, p),
respectively, are applied to P . There are two cases:

Case 2.1: p and p′ operate on different shared registers. Let
P0 = P · (p, p′) and P1 = P · (p′, p). Then P0 and P1

are indistinguishable by every process and by the shared reg-
isters, and P0 is 0-valent while P1 is 1-valent. Let r be a
process different from p and p′. Consider two continuations
C0 and C1 of P0 and P1, respectively, in which the move
(r, p) occurs repeatedly. In both continuations, r and p go
through the same sequence of states, and so they decide the
same value. However, since P0 is 0-valent, in C0 processes r
and p decide 0 and and since P1 is 1-valent, in C1 processes
r and p decide 1—a contradiction.

Case 2.2: p and p′ operate on the same shared register V .
We consider the following sub-cases:

– If both p and p′ read V then let P0 = P · (p, p′) and
P1 = P · (p′, p). Then P0 and P1 are indistinguishable
by every process and by the shared registers, and P0 is
0-valent while P1 is 1-valent. We reach a contradiction
as above.

– If p reads V while p′ writes V then let P0 = P · (p, p′)
and P1 = P ·(p′, p). Then P0 and P1 are indistinguish-
able from every process other than p and by the shared
registers, and P0 is 0-valent and P1 is 1-valent. We
reach a contradiction as above by considering continu-
ations of P0 and P1 in which the move (r, p′) occurs
repeatedly, where r is a process other than p and p′.

– If p writes V while p′ reads V , this case is analogous
to the one in which p reads V and p′ writes V .

– If both p and p′ write V , let r be a process other than p
and p′. Consider the two partial runs P · (p, p′) and P ·
(p, r). Recall that P ·(p, p′) is 0-valent. By assumption,
P · (p, r) is 0-valent or 1-valent. If it is 1-valent then
we fall back to Case 1, which leads to a contradiction.
So P · (p, r) is 0-valent. Let C0 be a continuation of
P · (p, r) in which the (p, r) occurs repeatedly. Let
C1 be a continuation of P · (p′, p) in which the move
(r, p) occurs repeatedly. The last step of p in P · (p′, p)
causes the same value to be written to V as the last
step of p in P · (p, r). Thus, it is easy to see that p
and r go through the same sequence of states in C0 and
C1, and therefore they decide the same value in both
continuations. However, P · (p, r) is 0-valent so p and
r decide 0 in C0, and P · (p′, p) is 1-valent so p and r
decide 1 in C1—a contradiction.

The following corollary states the contradiction that concludes
the proof of Theorem 4:

Corollary 18 There is an infinite run in which processes never de-
cide.

PROOF. From Lemmas 12 and 17, and Observation 16.

Since the partially synchronous system Sn−1
n is weaker than

Sn−1
n (i.e., the set of schedules of Sn−1

n is a superset of the set
of schedules of Sn−1

n), Theorem 4 implies the following:

Theorem 19 For every n ≥ 3, there is no algorithm that solves
binary consensus in Sn−1

n .

As we mentioned earlier, this impossibility result does not hold
for the special case n = 2, because in this case it is possible to
implement Ω [2] and with Ω one can solve consensus in the shared
memory model [15]:

Observation 20 There is an algorithm that solves consensus in S1
2 .

5. POSSIBILITY OF SET AGREEMENT
IN SYSTEM Sn−1

n

In the next section, we give an algorithm that implements (n−1)-
anti-Ω in system Sn−1

n (see Theorem 31). Since (n−1)-anti-Ω can
be used to solve set agreement [22],3 the following corollary of
Theorem 31 is immediate:

Corollary 21 For every n ≥ 2, set agreement can be solved in
system Sn−1

n .

6. POSSIBILITY OF k-ANTI-Ω
IN SYSTEM Sk

n

We now give an algorithm for k-anti-Ω for system Sk
n, that is, the

algorithm works if every run has at least one timely set of size k. In
the next section, we show that there are no algorithms for (k−1)-
anti-Ω for system Sk

n. Therefore, in a precise sense, we establish a
tight correspondence between the set of partially synchronous sys-
tems {S1

n, . . . ,Sn
n} and the set of failure detectors {1-anti-Ω, . . .,

n-anti-Ω} for k-set agreement.
In the following, Πk

n denotes the set of all subsets of Πn of size
k. The basic idea of our algorithm is that each process has a heart-
beat that it increments periodically, and each process has a timeout
timer on each set A in Πk

n. A process resets the timer for A when-
ever it sees that the heartbeat of some process in A has increased.
If the timer for A expires (the process times out on A), the pro-
cess increments a shared register Counter[A], which represents a
“badness” counter for A, and it also increments the timeout that it
subsequently uses for A. The process picks the set winnerset with
smallest counter, breaking ties using some arbitrary total order on
Πk

n, and then outputs the set Πn − winnerset.
The detailed algorithm is shown in Figure 2. Each process ex-

ecutes an infinite loop, in which the process reads Counter[A] for
each set A in Πk

n, chooses a winner, and sets the output of k-anti-Ω
accordingly. The process then increments its heartbeat, checks the
heartbeats of each process q and, if the heartbeat has increased, it
resets the timers of all the sets in Πk

n containing q. Finally, the pro-
cess checks if any of the timers has expired, and if so, it increments
the counter of the appropriate set.

Intuitively, this algorithm works because there is at least one set
of n− k processes that is timely. Therefore there is at least one set
such that processes stop timing out on it—and therefore its counter
eventually stops changing. Among all such sets, one of them say

3In fact, (n−1)-anti-Ω, which is simply called anti-Ω, is the weak-
est failure detector to solve set agreement [22].

SHARED REGISTERS

∀p ∈ Πn : Heartbeat[p] = 0
∀A ∈ Πk

n : Counter[A] = 0 { Πk
n is the set of all subsets

of Πn of size k }

CODE FOR PROCESS p:

Local variables

fdOutput = any set of processes of size n− k
winnerset = ∅
myHb = 0
∀q ∈ Πn : prevHeartbeat[q] = 0
∀A ∈ Πk

n : timeout[A] = 1
∀A ∈ Πk

n : timer[A] = timeout[A]
∀A ∈ Πk

n : cnt[A] = 0
hbq = 0

Main code

1 repeat forever

{ choose FD output }
2 for each A ∈ Πk

n do cnt[A]← read(Counter[A])
3 winnerset← argminA∈Πk

n
{(cnt[A], A)} { break ties using

a total order on Πk
n }

4 fdOutput← Πn − winnerset

{ bump heartbeat }
5 myHb← myHb + 1
6 write(Heartbeat[p], myHb)

{ check other processes’ heartbeat }
7 for each q ∈ Πn do
8 hbq← read(Heartbeat[q])
9 if hbq > prevHeartbeat[q] then
10 for each A ∈ Πk

n do
11 if q ∈ A then timer[A]← timeout[A]
12 prevHeartbeat[q]← hbq

{ check for expiration of set timers }
13 for each A ∈ Πk

n do
14 timer[A]← timer[A]− 1
15 if timer[A] = 0 then
16 timeout[A]← timeout[A] + 1
17 timer[A]← timeout[A]

{ increment Counter[A] based on the
value read in line 2 }

18 write(Counter[A], cnt[A] + 1)

Figure 2: Implementation of k-anti-Ω in system Sk
n for 1 ≤ k ≤

n−1.

A0 ends up with the smallest counter, and eventually all correct
processes pick this set as the winner and output Πn − A0. Note
that A0 must have a correct process for otherwise correct processes
keep timing out on A0 and so its counter would grow to infinity.

We now sketch a correctness proof. Henceforth, we consider an
arbitrary run R of the algorithm of Figure 2, in system Sk

n. In the
proof, the local variable var of a process p is denoted by varp. Let
S be the schedule of run R. All the steps refer to steps in S, and a
“correct process” refers to a correct process in S.

If there are no correct processes then all the requirements of k-
anti-Ω are satisfied. Thus we assume without loss of generality that
some process is correct. Since R is a run in system Sk

n, we can
define the following:

Definition 22 Let A′ be some timely set of size k.

Lemma 23 For all A ∈ Πk
n, if A is timely in S then there exists a

constant c such that every c consecutive steps in S contains a step
of a process in A that writes in line 6.

PROOF SKETCH. Each loop interaction has a bounded number
of steps, so the result follows from the definition of what it means
for set A to be timely in S.

Note that Counter[A] is not monotonically increasing (it may de-
crease) because it is read and later written concurrently by different
processes. However, we can show the following:

Lemma 24 For all A ∈ Πk
n, either Counter[A] stops changing or

it grows without bounds.4

PROOF SKETCH. For all A ∈ Πk
n, if Counter[A] does not stop

changing then some process writes Counter[A] infinitely often with
increasing values in line 18. Therefore it grows without bounds.

Lemma 25 For all A ∈ Πk
n, if A is timely in S then there is a time

after which Counter[A] stops changing.

PROOF SKETCH. From Lemma 23, there exists a constant c such
that, during the execution of any c consecutive steps, Heartbeat[p]
is incremented for some p ∈ A. Therefore, for every correct pro-
cess p, there exists a constant c′ such that timerp[A] is reset to
timeoutp[A] at least once every c′ steps of p. Thus, there is a time
after which p does not find that timerp[A] = 0 in line 15, and so
there is a time after which Counter[A] stops changing.

Lemma 26 For all A ∈ Πk
n, if every process in A crashes then

Counter[A] grows without bounds.

PROOF SKETCH. By assumption, some process p is correct. If
every process in A crashes then eventually no process in A in-
crements its entry in the Heartbeat vector. Thus, there is a time
after which p does not set timerp[A] to timeoutp[A] in line 17.
Then p will write Counter[A] infinitely often in line 18. Therefore
Counter[A] grows without bounds.

Definition 27 For all A ∈ Πk
n, let c(A) be defined as follows. If

Counter[A] eventually stops changing then c(A) is the final value
of Counter[A]; if Counter[A] grows without bounds then c(A) =
∞. Let A0 = argminA{(c(A), A)}.
4We say that x grows without bounds if for every M ≥ 0 there is
a time after which x ≥M .

Lemma 28 Eventually Counter[A0] stops changing.

PROOF. We assume that set A′ is timely and so, by Lemma 25,
Counter[A′] stops changing. Thus, c(A′) < ∞. So, by the defini-
tion of A0, c(A0) ≤ c(A′) < ∞. Therefore, Counter[A0] stops
changing.

Lemma 29 A0 has a correct process.

PROOF SKETCH. Immediate from Lemmas 28 and 26.

Lemma 30 There is a time after which all correct processes output
Πn −A0.

PROOF SKETCH. Let p be any correct process. It is clear that
there is a time after which p can only pick A0 in line 3, because
if A �= A0 then by Lemma 24, either (a) Counter[A] grows with-
out bounds so that, by Lemma 28, eventually (Counter[A], A) >
(Counter[A0], A0) or (b) Counter[A] stops changing so that, by
definition of A0, eventually (Counter[A], A) > (Counter[A0], A0).

Theorem 31 For every n and k such that 1 ≤ k ≤ n − 1, the
algorithm in Figure 2 implements k-anti-Ω in system Sk

n.

PROOF SKETCH. It is clear that the output at each process is a
set of n − k ≥ 1 processes. By Lemmas 29 and 30, there is a
correct process c in A0 and a time after which the set output by
each correct process does not contain c. Hence all the requirements
of k-anti-Ω are satisfied.

7. IMPOSSIBILITY OF k-ANTI-Ω
IN SYSTEM Sk+1

n

We now show that there are no algorithms that implement k-anti-
Ω in Sk+1

n . In fact, we show a stronger result, namely, that there are

no algorithms that implement k-anti-Ω in Sk+1
n . Our proof is based

on a new and simple technique called scheduling diagonalization,
which resembles diagonalization in Mathematics. The general idea
is that we consider a candidate algorithm A for k-anti-Ω, and we

construct a “bad” run R of A in Sk+1
n where processes are sched-

uled according to the output of A, such that R does not satisfy the

required properties of k-anti-Ω. To ensure that R is in Sk+1
n , it

is defined as an infinite sequence of moves, where each move has
steps by n− k processes. Therefore, a move intersects every set of
processes of size k + 1, and so every such set is timely.

To make the run R of A “bad”, we choose the moves dynami-
cally as we incrementally build R as a succession of moves: if p is
the last process that took a step in a move of R, then the next move
of R consists of the n− k processes that are output byA at p (note
that since A is supposed to implement k-anti-Ω , it must output a
set of n − k processes at each process). By this construction, the
only processes that are correct in run R (i.e., take infinitely many
steps in R) are those that are output by A at some correct process
infinitely often. In other words, in run R, every correct process is
output by A at some correct process infinitely often; thus A vio-
lates the specification of k-anti-Ω.

Theorem 32 For every n and k such that 1 ≤ k ≤ n− 1, there is
no algorithm that implements k-anti-Ω in system Sk+1

n .

1 I ← initial configuration of A
2 S ← empty schedule
3 B ← {1, . . . , n− k}
4 repeat forever
5 S ← S · move(B) { S is a finite schedule}
6 P ← (I, S,A) { P is a partial run of algorithm A}
7 p← last process in the schedule S
8 C ← configuration of A at the end of partial run P
9 B ← fdOutputp of p in configuration C

{ B is a set of n− k processes }

Figure 3: Algorithm for generating a bad run of a purported
k-anti-Ω algorithm A in system Sk+1

n .

PROOF SKETCH. Let n and k be such that 1 ≤ k ≤ n− 1. Let
A be a arbitrary algorithm where each process p has an fdOutputp
variable. We will show that A has a run R in system Sk+1

n such
that R does not satisfy the properties of k-anti-Ω. SinceA is chosen
arbitrarily, this will prove Theorem 32.

If A can set fdOutputp to a value not in Πn−k
n then it is easy

to construct a run R of A in Sk+1
n that violates the properties of

k-anti-Ω. So, henceforth assume that fdOutputp ∈ Πn−k
n for all

processes p. Run R is constructed by the algorithm in Figure 3.
This algorithm uses the notation “move(B)” defined below:

Definition 33 For every B ∈ Πn−k
n , move(B) is the finite sched-

ule consisting of the n − k processes of B in increasing order of
process id.

Each iteration of the loop of the algorithm of Figure 3 produces
increasingly larger run prefixes P . In the limit, after infinitely many
loop iterations, we obtain a run R:

Definition 34 Let R = (I, S,A) be the run of A generated by the
algorithm of Figure 3.

Since each move in R has n − k ≥ 1 processes and R has
infinitely many moves, we have the following:

Observation 35 There is a process that is correct in the schedule
S of R.

Lemma 36 For all A ∈ Πk+1
n , A is timely in S.

PROOF SKETCH. Let A ∈ Πk+1
n . Any 2(n − k) consecutive

steps of S contains move(B) for some set B of n − k processes.
Since A has k+1 processes and B has n−k processes, A∩B �= ∅.
Thus, any 2(n − k) consecutive steps of S contains some process
in A. By Observation 3, A is timely in S.

By Lemma 36, the schedule S of run R is in Scheds
k+1
n . Since

Sk+1
n = (Πn, Ξ, Scheds

k+1
n), we have:

Corollary 37 R is a run of A in system Sk+1
n .

Lemma 38 In run R, for every process q that is correct in S, there
exists a process p that is correct in S such that q ∈ fdOutputp
infinitely often.

PROOF SKETCH. Let q be any process that is correct in S. Since
q is correct in S, q appears in the schedule S infinitely often. Thus,
in the execution of the algorithm in Figure 3 that constructs run R,
process q is included in the set B in line 9 infinitely often. So, since
there are finitely many processes in Πn, there must be some process
p such that the following occurs infinitely often in this execution:
(1) p is selected in line 7, and (2) q ∈ fdOutputp in line 9. Since p
is selected infinitely often in line 7, p appears infinitely often in S,
i.e., p is correct in S.

Lemma 38 implies that R does not satisfy the required properties
of k-anti-Ω, concluding the proof of Theorem 32.

It is worth noting that the construction of the “bad” run R in the
above proof is not done formally in the failure detector model with
failure patterns, failure detector histories, etc. However, it is easy
to map our construction into a more formal one (e.g., by defining a
failure pattern for the run that we constructed).

8. RELATED WORK
Dwork, Lynch, and Stockmeyer [8] introduce the concept of par-

tial synchrony. They propose message-passing models in which
there are eventual or unknown bounds on message transmission
times and on relative process speeds. These bounds must hold be-
tween every pair of processes. It is shown that consensus can be
solved in these models. Subsequent work [1, 2, 9, 13, 14, 17, 19]
proposed weaker types of partial synchrony (for message-passing
systems) with which consensus can still be solved or Ω can be im-
plemented (Ω is the weakest failure detector for consensus [5]).
None of these works have considered models in which set agree-
ment can be solved, but consensus cannot.

[3] defines what it means for a single process p to be timely with
respect to another process q and considers a shared-memory model
where each process may or may not be timely (with respect to every
other process in the system). In this model, the paper shows that
every shared object (e.g., consensus) can be implemented such that
all the timely processes access the object in a wait-free manner —
a progress property called timeliness-based wait-freedom.

The IIS model [11] is a round-based model in which, in each
round, a process atomically writes a value and obtains a snapshot of
the values written by other processes in the round. In this model, set
agreement and consensus are impossible. Rajsbaum et al. [20, 21]
propose a family of models called IRIS that are weaker than the
IIS model. This family is parameterized by a property PRC on the
snapshot values that a process can obtain in a round. This prop-
erty “restricts the asynchrony” of the system, because the fact that
a snapshot cannot return certain values means that the execution
cannot proceed in certain ways. Specific IRIS models are given in
which k-set agreement is solvable but (k−1)-set agreement is not,
thus providing a separation between these problems. Our model of
partial synchrony differs from the IRIS models in two ways. First,
we express synchrony behavior directly via timeliness properties
of processes, whereas the IRIS models restrict the allowable execu-
tions via properties that snapshots must satisfy. Second, our model
is based on read-write shared memory, whereas the IRIS model is
based on rounds with immediate snapshots. It is possible to imple-
ment these rounds in the read-write shared memory model, but it is
unclear how the restricted runs of IRIS map to the timeliness prop-
erties of the shared memory model. For instance, a process that
never appears in the snapshot of other processes may be a process
that is actually timely in the shared memory model that implements
IRIS: this process may execute at the same speed as other processes
but always start a round a few steps later.

The use of moves in our bivalency proof in Section 4 can be
seen as a special type of layering as defined by Moses and Rajs-
baum [18]. Roughly speaking, a layering is a function that maps a
state into a set of possible subsequent states that could occur in a
run. It provides a framework to carry out the bivalency technique
in an abstract and general way. However, to use this framework one
must still find an adequate layering function, such that it generates
fair runs in the model, and it satisfies some connectedness proper-
ties. Finding such a layering, and proving it is adequate, can be
non-trivial. It is possible that our proof can be carried out in that
framework, but we opted for a more self-contained approach.

Acknowledgements. The authors are grateful to the anonymous
referees for their many helpful comments.

9. REFERENCES
[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and

S. Toueg. Communication-efficient leader election and
consensus with limited link synchrony. In ACM Symposium
on Principles of Distributed Computing, pages 328–337, July
2004.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing Omega in systems with weak
reliability and synchrony assumptions. Distributed
Computing, 21(4):285–314, Oct. 2008.

[3] M. K. Aguilera and S. Toueg. Timeliness-based
wait-freedom: a gracefully degrading progress condition. In
ACM Symposium on Principles of Distributed Computing,
pages 305–314, Aug. 2008.

[4] A. F. Anta, S. Rajsbaum, and C. Travers. Weakest failure
detectors via an egg-laying simulation (preliminary version).
Tech Report RoSaC-2009-2, Grupo de Sistemas y
Comunicaciones, Universidad Rey Juan Carlos, Jan. 2009.
Also appears as a brief announcement in PODC 2009.

[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685–722, July 1996.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM,
43(2):225–267, Mar. 1996.

[7] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
A. Tielmann. The disagreement power of an adversary.
Article id hal-00376981, Hyper Article en Ligne, Apr. 2009.
Available at http://hal.archives-ouvertes.fr/hal-00376981.

[8] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[9] A. Fernández and M. Raynal. From an intermittent rotating
star to a leader. Technical Report 1810, IRISA, Université de
Rennes, France, Aug. 2006.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, Apr. 1985.

[11] E. Gafni. Round-by-round fault detectors: Unifying
synchrony and asynchrony (extended abstract). In ACM
Symposium on Principles of Distributed Computing, pages
143–152, June 1998.

[12] E. Gafni and P. Kuznetsov. The weakest failure detector for
solving k-set agreement. In ACM Symposium on Principles
of Distributed Computing, Aug. 2009.

[13] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing the
weakest system model for implementing Ω and Consensus.

IEEE Transactions on Dependable and Secure Computing.
To appear.

[14] E. Jiménez, S. Arévalo, and A. Fernández. Implementing
unreliable failure detectors with unknown membership.
Information Processing Letters, 100(2):60–63, Oct. 2006.

[15] W. K. Lo and V. Hadzilacos. Using failure detectors to solve
consensus in asynchronous shared-memory systems. In
International Workshop on Distributed Algorithms, pages
280–295, Sept. 1994.

[16] M. C. Loui and H. H. Abu-Amara. Memory requirements for
agreement among unreliable asynchronous processes.
Advances in Computing Research, 4:163–183, 1987.

[17] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos:
leader election and stability without eventual timely links. In
International Conference on Distributed Computing, volume
3724 of LNCS, pages 199–213. Springer Verlag, Sept. 2005.

[18] Y. Moses and S. Rajsbaum. A layered analysis of consensus.
SIAM Journal on Computing, 31(4):989–1021, 2002.

[19] A. Mostefaoui, M. Raynal, and C. Travers. Time-free and
timer-based assumptions can be combined to obtain eventual
leadership. IEEE Transactions on Parallel and Distributed
Systems, 17(7):656–666, July 2006.

[20] S. Rajsbaum, M. Raynal, and C. Travers. Failure detectors as
schedulers (an algorithmically-reasoned characterization).
Technical Report 1838, IRISA, Université de Rennes,
France, Mar. 2007.

[21] S. Rajsbaum, M. Raynal, and C. Travers. The iterated
restricted immediate snapshot model. In International
Computing and Combinatorics Conference, volume 5092 of
LNCS, pages 487–497. Springer, June 2008.

[22] P. Zielinski. Anti-Omega: the weakest failure detector for set
agreement. In ACM Symposium on Principles of Distributed
Computing, pages 55–64, Aug. 2008.

