

Associated with each subSLA is the utility of that
consistency-latency pair to the application. Lower-
ranked subSLAs have lower utility than higher-ranked
ones within the same SLA. The utility of a subSLA is
a number that allows applications to indicate its
relative importance. As will be seen in Section 4.6,
these utilities are used to decide the best strategy for
meeting an SLA. If Pileus were deployed as a public
cloud service with a tiered pricing model, the utility of
a subSLA ideally would match the price the storage
provider charges for the given level of service. In this
case, the storage provider has a strong incentive to
meet the highest subSLA possible, the one that will
generate the highest revenue.

4 Design and implementation
This section presents the design and

implementation of the Pileus system. The emphasis is
on the challenges faced in providing consistency-based
SLAs for access to data that is partitioned and geo-
replicated.

4.1 Architecture
The Pileus system contains the following major

components:
Storage nodes are servers that hold data and

provide a Get/Put interface. They know nothing about
consistency guarantees or SLAs. The Put operation
writes a new version with a given timestamp, while the
Get operation returns the latest version that is known to
the node. Any number of storage nodes may exist in
each datacenter. As discussed in more detail below,
some storage nodes are designated as primary nodes,
which hold the master data, while others are secondary
nodes.

Replication agents are co-located with storage
nodes and asynchronously propagate updates between
nodes. Any replication protocol could be used as long
as updates are applied in timestamp order. In our
current implementation, secondary nodes periodically
pull new versions of data objects from primary nodes
(though they could also receive updates from other
secondary nodes). Each replication agent simply
records the latest timestamp of any version it has
received and periodically, say once per minute,
retrieves versions with higher timestamps.

Monitors track the amount by which various
secondary nodes lag behind their primaries and
measure the roundtrip latencies between clients and
storage nodes. In the current system, each client has its
own monitor though having a shared monitoring
service could be useful (as discussed in Section 6.1).

The client library is linked into the application
code. It exports the API presented in Section 3 and
maintains state for sessions. Moreover, the client
library contains the logic for directing Get operations
to the storage nodes that maximize the expected utility
for a given SLA.

4.2 Replication and partitioning
For scalability, a large table can be sharded into one

or more tablets, as in other storage systems like
BigTable [16]. Horizontal partitioning divides each
table into tablets according to key-ranges. Tablets are
the granularity of replication and are independently
replicated on multiple storage nodes.

All Puts in Pileus are performed and strictly
ordered at a primary site, a set of storage nodes within
a datacenter. Different tablets may be configured with
different primary sites; only the primary site accepts
Put operations for keys in the tablet’s key-range. This
mimics the design of many commercial cloud storage
systems including Windows Azure Storage [14] and
PNUTS, except that PNUTS allows per-object masters
[17]. The advantages of this primary-update approach,
compared to a multi-master update scheme, are two-
fold. First, the primary site is an authoritative copy for
answering strongly consistent Gets. Second, the
system avoids conflicts that might arise from different
clients concurrently writing to different servers.

The primary site could consist of a fault-tolerant
cluster of servers, but any such structuring is invisible
to clients. The initial Pileus prototype, which is used
for the evaluations in section 5, designates a single
node as the primary. Clearly, this has limited fault-
tolerance that could be addressed by well-known
techniques such as the Paxos-based scheme used in
Spanner [19] or chain replication [41]. As an example,
we have built a second version of Pileus in which each
“node” is a Windows Azure Storage account utilizing
strongly consistent three-way replication.

Secondary nodes eventually receive all updated
objects along with their update timestamps via an
asynchronous replication protocol. Because this

Rank Consistency Latency Utility
1. bounded(300) 200 ms 0.00001
2. bounded(300) 400 ms 0.000008
3. bounded(300) 600 ms 0.000005
4. bounded(300) 1000 ms 0.0

Figure 5. The web application SLA

Rank Consistency Latency Utility
1. strong 150 ms 1.0
2. eventual 150 ms 0.5
3. strong 1 sec 0.25

Figure 6. The password checking SLA

4.6.1 Choosing a target subSLA
Recall that an SLA consists of an ordered list of

subSLAs where each subSLA has an application-
provided utility. The client library’s goal in selecting a
storage node is to maximize the expected utility.
Figure 8 illustrates the algorithm used when presented
with a Get operation and an SLA.

For each subSLA and each node storing the key
that is being accessed by the Get, the client computes
the expected utility that would accrue from sending the
Get to that node. This expected utility is the product of
the PNodeSla function provided by the monitor and the
utility associated with this subSLA. The client selects
the target subSLA with the highest expected utility
along with the set of nodes that it believes can best
meet this subSLA at the current time. If multiple nodes
offer the same expected utility, the client chooses the
one that is closest. Alternatively, the client could
choose one at random to balance the load or pick the
one that is most up-to-date.

Note that the application’s top subSLA is not
always chosen as the target subSLA. For example,
consider the shopping cart SLA specified in Figure 4.
If the second subSLA has a utility that is only slightly
less than that of the first subSLA and the first subSLA
has a much lower chance of success, then the client
will select the second subSLA as its target and choose
among the nodes that can provide eventually consistent
data rather than aiming for read-my-writes consistency.

4.6.2 Determining which subSLA was met
The client measures the time between sending a Get

and getting a reply, and uses this round-trip latency
along with timestamps included in the reply to
determine whether the target subSLA was met. The
client may determine that some higher or lower
subSLA was satisfied.

In the response to each Get operation, along with
the value of the requested data object, a storage node
includes its current high timestamp. Given the
minimum acceptable read timestamps for each
consistency guarantee, the client can use the
responding node’s high timestamp to determine what
consistency is actually being provided for a particular

Get. The client uses this actual consistency, along with
the measured round-trip latency, to determine which
subSLA was satisfied and returns this indication to the
Get’s caller.

Interestingly, a Get may meet a higher subSLA than
the target subSLA. For example, revisiting the
shopping cart SLA, although the client may have
chosen a node that it believed would provide only
eventual consistency, the storage node may return an
object whose version satisfies the read-my-writes
guarantee as illustrated in Figure 9. This could very
well happen in practice when the client has outdated
information for storage nodes, and hence severely
underestimates whether a node can meet a guarantee.

5 Evaluation
This section describes experiments we conducted to

evaluate Pileus in a globally distributed datacenter
environment. The goal was to verify that adapting
consistency to different conditions in accordance with
application-specific SLAs can yield significant benefits
compared to selecting a fixed consistency.

5.1 Experimental set-up
For these experiments, Pileus was run on a research

test bed connecting private datacenters in different
parts of the world. As shown in Figure 10, the primary
storage node was in England and secondary nodes were
placed on the U.S. West Coast and in India. We
evaluate configurations where the client runs in the
same datacenter as one of the nodes as well as when it
is in China.

The widely used YCSB benchmark [18], which was
developed for evaluating the performance of cloud-
based key-value stores, provided the workload that we
used in our experiments. In this workload, clients
perform equal numbers of Puts and Gets to a collection
of 10,000 keys. We adapted this workload to add the
notion of sessions. In particular, we started a session,
performed 400 Gets and Puts in this session, then
ended the session and started a new one.

One client performs all of the Gets and Puts in the
benchmark. The origin of the Puts is irrelevant since
they all are performed on the primary node, and so the

Figure 9. Meeting a higher subSLA than
predicted

Figure 10. Experimental configuration with the
average round-trip latency (in milliseconds)

between datacenters in four countries

0 no
w

read-my-writes
eventual

actual high
timestamp

recorded high
timestamp

Table 2. Again, Pileus targets the top subSLA when
the client is in the U.S. or England and always reads
from the primary. When the client is in the U.S.,
choosing to read from the remote primary rather than
the local secondary is almost always the correct
decision, though occasionally the primary does not
respond quickly enough, resulting in a .99 average
utility. When the client is in India, Pileus believes the
top subSLA to be unattainable since the primary is too
far away, and thus it targets the second subSLA and
reads from the local secondary. The client in China is
so remote that Pileus forgoes the top two subSLAs and
targets the third one, causing it to read from the
primary but delivering only a 0.25 utility; in contrast,
the Closest strategy always accesses the U.S. and
receives a zero utility, which is worse than Random’s
0.08 average utility.

5.4 Adaptability to network delays
To explore how well Pileus adapts to latencies that

change drastically over time, we repeated our
experiments for the password checking SLA while
introducing artificial delays in the round-trip times for
Get operations. Figure 13 shows the delivered utility
for Gets performed over a period of almost six minutes.
Initially, with no added delays, the client (in the U. S.)
always chooses to go to the primary (in England) for
the first subSLA but occasionally the primary does not
respond in time (as previously indicated in Table 2).
At the point labeled #1 in Figure 13, the latency to the
primary node was increased by 300 ms; we simply
added 300 ms to the measured round-trip times that
were reported to the client. Such an increase might
happen in practice if the primary or its
inbound/outbound network becomes overloaded. For
some small period of time (between points #1 and #2 in
the figure), the client continued to choose the top
subSLA and continued to send all of its Gets to the
primary. None of these Gets returned in time to meet
the top subSLA but they did satisfy the third subSLA,
resulting in a utility of 0.25.

Eventually, the client learned that the primary was
too far away, switched to the second subSLA, and
started performing Gets on the local node (between

points #2 and #3 in the figure). At point #3, we added
300 ms to the latency when accessing the local node.
For some period (between points #3 and #4) the client
continued to use the local node, but it responded too
slowly and was too inconsistent to meet any of the
subSLAs, resulting in a utility of zero. Note that in this
case, after receiving a local response, the client could
have performed the Get at the primary and still have
met the third subSLA within the specified 1-second
bound; we are considering adding such a strategy to the
client library. At point #4, the client decided correctly
that only the third subSLA could be met and resumed
sending Gets to the primary.

At point #5 we reduced the access latency to the
local node back to a millisecond, and at point #6 we
restored the average latency to the primary to the usual
149 ms. The client eventually discovers, through
periodic probes, that it can regularly access its local
site with low delay, and the client switches back to
choosing the second subSLA; this switch takes a while
since the client probes infrequently and has some built-
in hysteresis. Later, sometime after point #6, the client
switches to targeting the top subSLA and resumes
sending Gets to the primary. This experiment clearly
demonstrates Pileus’s ability to select a strategy that
maximizes the delivered utility in response to varying
network latencies.

5.5 Sensitivity to utility values
Finally, to study the sensitivity of our results to the

utility number included in an SLA, we varied the
utilities for the password checking SLA in Figure 6.
We multiplied the utilities of the second and third
subSLAs by a factor from 2, which places the second
subSLA on par with the first, to 0.1, which makes the
top subSLA considerably more valuable. These results
are presented in Figure 14. Observe that different
utilities affect the relative rankings of the fixed
selection schemes but Pileus again outperforms them.

Figure 12. Utility of password checking SLA

Client Target
SubSLA

Get from
U.S.

Get from
England

Get from
India

SubSLA
Met

Avg.
Utility

U.S. 1 0% 100% 0% 99.4% 0.99
 2 0% 0% 0% 0%
 3 0% 0% 0% 0.6%

England 1 0% 100% 0% 100% 1.0
 2 0% 0% 0% 0%
 3 0% 0% 0% 0%

India 1 0% 0% 0% 0% 0.5
 2 0% 0% 100% 100%
 3 0% 0% 0% 0%

China 1 0% 0% 0% 0% 0.25
 2 0% 0% 0% 0%
 3 0% 100% 0% 100%

Table 2. Breakdown of Pileus client decisions for
password checking SLA

5.6 Summary
In all of the configurations that we measured, Pileus

delivered the same utility as the best performing fixed
consistency scheme. As expected, always requesting
strong or always requesting eventual consistency
yielded suboptimal service in some configurations.
Pileus was able to adapt the service provided to clients
in different locations to best meet the target SLA.

6 Extensions and future work
6.1 Enhanced monitoring

Although the monitoring performed in Pileus does
not consume many resources, especially when it
piggybacks on normal traffic, it could potentially be
improved. For one thing, clients could adapt the rate at
which they send periodic probes based on the data they
obtain. If the latency to a node is fairly stable and the
consistency predictable, then clients could probe less
frequently.

Even if communication latencies are well-known,
probes are used to determine the staleness of a storage
node. Clients could potentially predict a node’s high
timestamp based on the time that it last communicated
with the node as well as knowledge about the update
rates for various objects and the replication protocol’s
propagation delay.

Additionally, clients could share monitoring
information with other clients in the same datacenter.
We have considered having a distributed monitoring
service that is detached from individual clients, perhaps
with monitors in every region of the world, or having
clients gossip monitoring information among
themselves. Exploring the relationship between the
amount of traffic generated by various monitoring
schemes and the accrued benefits is an interesting
subject for future work.

6.2 SLA-driven reconfiguration
Currently, we assume that the number and

placement of storage nodes is outside of Pileus’s
control. However, given knowledge of the SLAs being
used by various clients, the system could make
reasonable re-configuration decisions. For example,
Pileus might automatically move the primary to a

different datacenter in order to maximize the utility
delivered to its clients. If one client has stringent
latency requirements but loose consistency needs, a
new secondary storage node could be placed nearby.
Similarly, the rate at which updated data objects are
propagated from the primary to secondary nodes could
be adjusted based on the clients’ desired consistency
and proximity. We are currently investigating SLA-
driven reconfiguration.

6.3 Parallel Gets
The current system sends each Get operation to a

single node based on utility estimates. This policy
minimizes client costs when storage providers charge
for each operation. However, clients could receive
more rapid responses and more up-to-date data when
sending a Get in parallel to two or more nodes that are
predicted to provide roughly the same service,
particularly in cases where changing conditions lead to
poor utility estimates. Existing methods for computing
expected utilities could be used in a cost-benefit
analysis to explore multi-node selection schemes.

6.4 Multi-site Puts
Our current implementations perform Put operations at
a single primary site, i.e. a cluster of storage nodes
within a datacenter. Generally, the cost of Put
operations can be traded off against the cost of strongly
consistent Get operations. If the system synchronously
sends Puts to a larger collection of primary nodes,
possibly nodes that are replicated across datacenters or
even across regions, the expected latency of strong
Gets is reduced (and the availability of such operations
increases). A wider distribution of primary nodes can
positively affect Gets with other consistency choices as
well, except for eventual consistency. A thorough
study of these Put/Get trade-offs remains future work.

7 Related work
The design of Pileus adopts and extends prior work

on cloud storage systems, variable consistency, and
service level agreements. However, we are not aware
of other systems that combine consistency guarantees
with latency targets as part of a storage service SLA.

Figure 13. Behavior under varying latency

Figure 14. Behavior under varying utility

Numerous cloud storage systems have been
designed with a variety of data models, read and write
operations, replication protocols, consistency, and
partitioning schemes. Some key-value store probably
exists with every imaginable combination of features
and occupies every point in the space of consistency,
scalability, availability, cost, and performance trade-
offs. These include Dynamo [20], SimpleDB [5],
BigTable [16], PNUTS [17][35], Cassandra [27],
Windows Azure [14], Spanner [19], and many more
[15]. Pileus borrows from many of these systems its
simple Get/Put interface, key-range partitioning, geo-
replication, and primary-update model.

Researchers have observed the need for more
flexible storage designs that permit tradeoffs between
consistency and availability [33]. Some cloud storage
systems offer both strongly consistent and eventually
consistent read operations [22][43][17][2][8], and
papers have suggested switching between these options
based on application classes [26][45]. Studies have
shown that even eventually consistent systems
frequently deliver strongly consistent data [11][44].
Researchers have proposed consistency models with
guarantees that lie between these two extremes, such as
session guarantees [36], continuous consistency
[3][9][46], RedBlue consistency [29], and causal
consistency [30], and many have been shown to be
useful in diverse applications [10][36][42][23][34].
However, very few of these are being used in current
systems. To the best of our knowledge, Pileus is the
first cloud storage system to offer a broad choice of
consistency guarantees, and allow the requested
consistency to vary for each Get even when accessing
the same data.

Service level agreements are an integral part of
cloud services, including storage and networking. But
such SLAs mainly focus on performance metrics and
availability. For example, a typical SLA for an
Amazon service guarantees “a response within 300ms
for 99.9% of its requests” [20]. Others have suggested
including consistency in SLAs [7] and developed
algorithms for checking consistency [6][21], but Pileus
is the first system to actually support consistency-based
SLAs.

8 Conclusions
The Pileus storage system’s main contribution is

support for consistency-based SLAs that allow
developers to declaratively specify their needs using a
choice of consistency guarantees coupled with latency
targets. Get operations access data that is partitioned
and replicated among servers in all parts of the world
while conforming to such SLAs. Consistency-based
SLAs allow applications that were written to tolerate
eventual consistency, as are many cloud applications

today, to benefit from increased consistency when the
performance cost is not excessive. When conditions
are favorable, such as when the application is running
in the same datacenter as up-to-date replicas, Pileus is
able to deliver ideal consistency and latency to the
application, and when conditions are less favorable,
such as when nodes fail or become overloaded or
clients are far from their frequently accessed data, the
application’s SLA indicates how best to adapt.

Pileus cleanly separates the mechanism for finding
versions of a data object with the desired consistency
from the techniques for selecting servers that can meet
an SLA given existing network and server
characteristics. Timestamp mechanisms support a
broad range of consistencies while monitoring permits
clients to independently select subSLAs that maximize
the utility delivered to their local applications.

While our early experimental results show that
consistency-based SLAs can indeed improve
application-specific levels of service, further studies
are needed to explore the full space of practical SLAs.
Future work will investigate additional schemes for
monitoring/predicting the lag and performance of
storage nodes, expanding the choice of consistency
guarantees, and automatically configuring services
based on their applications’ SLAs.

9 Acknowledgements
For their feedback at various stages of our research,

we thank our colleagues including Paul Barham, Phil
Bernstein, Michael Isard, Rebecca Isaacs, Jean-
Philippe Martin, Rama Ramasubramanian, Masoud
Saeida Ardekani, Mike Schroeder, Chandu Thekkath,
and Yuan Yu. For letting us play with their client
library, we thank our friends in Windows Azure,
especially Brad Calder and Jai Haridas.

10 References
[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A.

Wolman, and H. Bhogan. Volley: Automated data
placement for geo-distributed cloud services.
Proceedings USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April
2010.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM
Transactions on Computer Systems 27 (3),
November 2009.

[3] R. Alonso, D. Barbara, and H. Garcia-Molina.
Data caching issues in an information retrieval
system. ACM Transactions on Database Systems
15(3):359-384, September 1990.

[4] Amazon Web Services. Amazon DynamoDB
Pricing.
http://aws.amazon.com/dynamodb/pricing/

[5] Amazon Web Services. Amazon SimpleDB.
http://aws.amazon.com/simpledb/

[6] E. Anderson, X. Li, M. Shah, J. Tucek, and J.
Wylie. What consistency does your key-value
store actually provide? Proceedings USENIX
Workshop on Hot Topics in Systems
Dependability, 2010.

[7] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. SCADS:
Scale-independent storage for social computing
applications. Proceedings Conference on
Innovative Data Systems Research (CIDR),
January 2009.

[8] J. Baker, C. Bond, J. C. Corbett, JJ Furman, A.
Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services.
Proceedings Conference on Innovative Data
Systems Research (CIDR), January 2011.

[9] D. Barbara-Milla and H. Garcia-Molina. The
demarcation protocol: A technique for maintaining
constraints in distributed database systems. VLDB
Journal 3(3):325-353, 1994.

[10] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A.
Venkataramani, P. Yalagandula and J. Zheng.
PRACTI replication. Proceedings USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), May 2006.

[11] D. Bermbach and S. Tai. Eventual consistency:
How soon is eventual? An evaluation of Amazon
S3's consistency behavior. Proceedings Workshop
on Middleware for Service Oriented Computing,
December 2011.

[12] E. Brewer. CAP twelve years later: How the
“rules” have changed. IEEE Computer, February
2012.

[13] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
self-organized, fault-tolerant and scalable
replication scheme for cloud storage. Proceedings
ACM Symposium on Cloud Computing (SoCC),
June 2010.

[14] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A.
Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J.
Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A.
Agarwal, M. Fahim ul Haq, M. Ikram ul Haq, D.
Bhardwaj, S. Dayanand, A. Adusumilli, M.
McNett, S. Sankaran, K. Manivannan, and L.
Rigas. Windows Azure Storage: A highly
available cloud storage service with strong

consistency. Proceedings ACM Symposium on
Operating Systems Principles (SOSP), October
2011.

[15] R. Cattell, Scalable SQL and NoSQL data stores,
ACM SIGMOD Record 39(4), December 2010.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D.
A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on
Computer Systems 26(2), June 2008.

[17] B. Cooper, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s
hosted data serving platform. Proceedings
International Conference on Very Large Data
Bases (VLDB), August 2008.

[18] B. F. Cooper, A. Silberstein, E. Tam, R.
Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. Proceedings ACM
Symposium on Cloud Computing (SoCC), June
2010.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C.
Frost, JJ Furman, S. Ghemawat, A. Gubarev, C.
Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E.
Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D.
Nagle, S. Quinlan, R. Rao, L, Rolig, Y. Saito, M.
Szymaniak, C. Taylor, R. Wang, and D.
Woodford. Spanner: Google’s globally-distributed
database. Proceedings USENIX Symposium on
Operating System Design and Implementation
(OSDI), October 2012.

[20] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon's highly available key-value
store. Proceedings ACM Symposium on Operating
Systems Principles (SOSP), October 2007.

[21] W. Golab , X. Li , and M. A. Shah. Analyzing
consistency properties for fun and profit.
Proceedings ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC),
June 2011.

[22] Google. Read consistency & deadlines: more
control of your datastore. Google App Engine
Blog, March 29, 2010.
http://googleappengine.blogspot.com/2010/03/read
-consistency-deadlines-more-control.html

[23] H. Guo, P.-Å. Larson, R. Ramakrishnan, and J.
Goldstein. Relaxed currency and consistency:
How to say "good enough" in SQL. Proceedings
ACM International Conference on Management of
Data (SIGMOD), June 2004.

http://aws.amazon.com/simpledb/
http://www.hpl.hp.com/techreports/2010/HPL-2010-98.pdf
http://www.hpl.hp.com/techreports/2010/HPL-2010-98.pdf
http://research.yahoo.com/node/2304
http://research.yahoo.com/node/2304
http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html
http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html

[24] J. Hamilton. The cost of latency. Perspectives
Blog, October 31, 2009.
http://perspectives.mvdirona.com/2009/10/31/The
CostOfLatency.aspx

[25] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax, R.
Ramakrishnan, A. Silberstein, E. Tam, and H.
Garcia-Molina. Where in the world is my data?
Proceedings International Conference on Very
Large Data Bases (VLDB), August 2011.

[26] T. Kraska, M. Hentschel, G. Alonso, and D.
Kossmann. Consistency rationing in the cloud:
pay only when it matters. Proceedings
International Conference on Very Large Data
Bases (VLDB), August 2009.

[27] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Operating Systems Review 44(2), April 2010.

[28] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of
the ACM 21(7), July 1978.

[29] C. Li, D. Porto, A. Clement, J. Gehrke, N.
Preguica, and R. Rodrigues. Making geo-
replicated systems fast as possible, consistent
when necessary. Proceedings USENIX
Symposium on Operating System Design and
Implementation (OSDI), October 2012.

[30] W. Lloyd, M. J. Freedman, M. Kaminsky, and D.
G. Andersen. Don't settle for eventual: Scalable
causal consistency for wide-area storage with
COPS. Proceedings ACM Symposium on
Operating Systems Principles (SOSP), October
2011.

[31] R. Minnear. Latency: The Achilles heel of cloud
computing. Cloud Computing Journal, March 9,
2011.

[32] Oracle. Oracle NoSQL Database. An Oracle
White Paper, September 2011.
http://www.oracle.com/technetwork/database/nosq
ldb/learnmore/nosql-database-498041.pdf

[33] A. Phanishayee, D. G. Andersen, H. Pucha, A.
Povzner, and W. Belluomini. Flex-KV: Enabling
high-performance and flexible KV systems.
Proceedings Workshop on Management of Big
Data Systems, September 2012.

[34] M. Serafini and F. Junqueira. Weak consistency as
a last resort. Proceedings ACM Workshop on
Large Scale Distributed Systems and Middleware
(LADIS), July 2010.

[35] A. E. Silberstein, R. Sears, W. Zhou, and B. F.
Cooper. A batch of PNUTS: Experiences
connecting cloud batch and serving systems.

Proceedings International Conference on
Management of Data (SIGMOD), June 2011.

[36] D. Terry, A. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. Welch. Session guarantees for
weakly consistent replicated data. Proceedings
IEEE International Conference on Parallel and
Distributed Information Systems, 1994.

[37] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser.
Managing update conflicts in Bayou, a weakly
connected replicated storage system. Proceedings
ACM Symposium on Operating Systems Principles
(SOSP), December 1995.

[38] D. Terry, V. Prabhakaran, R. Kotla, M.
Balakrishnan, and M. K. Aguilera. Transactions
with consistency choices on geo-replicated cloud
storage. Microsoft Technical Report MSR-TR-
2013-82, September 2013.

[39] D. Terry. Replicated data consistency explained
through baseball, Microsoft Technical Report
MSR-TR-2011-137, October 2011. To appear in
Communications of the ACM, December 2013.

[40] J. F. Van Der Zwet. Layers of latency: Cloud
complexity and performance. Wired, September
18, 2012.

[41] R. van Renesse and F. B. Schneider. Chain
replication for supporting high throughput and
availability. Proceedings USENIX Symposium on
Operating System Design and Implementation
(OSDI), December 2004.

[42] W. Vogels. Eventually consistent.
Communications of the ACM, January 2009.

[43] W. Vogels. Choosing consistency. All Things
Distributed, February 24, 2010.
http://www.allthingsdistributed.com/2010/02/stron
g_consistency_simpledb.html

[44] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu.
Data consistency properties and the trade-offs in
commercial cloud storages: the consumers’
perspective. Proceedings Conference on
Innovative Data Systems Research (CIDR),
January 2011.

[45] X. Wang, S. Yang, S. Wang, X. Niu, and J. Xu.
An application-based adaptive replica consistency
for cloud storage. Proceedings IEEE International
Conference on Grid and Cloud Computing,
November 2010.

[46] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for
replicated services. ACM Transactions on
Computer Systems 20(3):239-282, August 2002.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://dl.acm.org/citation.cfm?id=1687627.1687657
http://dl.acm.org/citation.cfm?id=1687627.1687657
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=331722
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=331722
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf

