












Associated with each subSLA is the utility of that 
consistency-latency pair to the application.  Lower-
ranked subSLAs have lower utility than higher-ranked 
ones within the same SLA.  The utility of a subSLA is 
a number that allows applications to indicate its 
relative importance.  As will be seen in Section 4.6, 
these utilities are used to decide the best strategy for 
meeting an SLA.  If Pileus were deployed as a public 
cloud service with a tiered pricing model, the utility of 
a subSLA ideally would match the price the storage 
provider charges for the given level of service.  In this 
case, the storage provider has a strong incentive to 
meet the highest subSLA possible, the one that will 
generate the highest revenue. 

4 Design and implementation 
This section presents the design and 

implementation of the Pileus system.  The emphasis is 
on the challenges faced in providing consistency-based 
SLAs for access to data that is partitioned and geo-
replicated. 

4.1 Architecture  
The Pileus system contains the following major 

components: 
Storage nodes are servers that hold data and 

provide a Get/Put interface.  They know nothing about 
consistency guarantees or SLAs.  The Put operation 
writes a new version with a given timestamp, while the 
Get operation returns the latest version that is known to 
the node.  Any number of storage nodes may exist in 
each datacenter.  As discussed in more detail below, 
some storage nodes are designated as primary nodes, 
which hold the master data, while others are secondary 
nodes. 

Replication agents are co-located with storage 
nodes and asynchronously propagate updates between 
nodes.  Any replication protocol could be used as long 
as updates are applied in timestamp order.  In our 
current implementation, secondary nodes periodically 
pull new versions of data objects from primary nodes 
(though they could also receive updates from other 
secondary nodes).  Each replication agent simply 
records the latest timestamp of any version it has 
received and periodically, say once per minute, 
retrieves versions with higher timestamps. 

Monitors track the amount by which various 
secondary nodes lag behind their primaries and 
measure the roundtrip latencies between clients and 
storage nodes.  In the current system, each client has its 
own monitor though having a shared monitoring 
service could be useful (as discussed in Section 6.1).  

The client library is linked into the application 
code.  It exports the API presented in Section 3 and 
maintains state for sessions.  Moreover, the client 
library contains the logic for directing Get operations 
to the storage nodes that maximize the expected utility 
for a given SLA.   

4.2 Replication and partitioning 
For scalability, a large table can be sharded into one 

or more tablets, as in other storage systems like 
BigTable [16].  Horizontal partitioning divides each 
table into tablets according to key-ranges.  Tablets are 
the granularity of replication and are independently 
replicated on multiple storage nodes.   

All Puts in Pileus are performed and strictly 
ordered at a primary site, a set of storage nodes within 
a datacenter.  Different tablets may be configured with 
different primary sites; only the primary site accepts 
Put operations for keys in the tablet’s key-range.  This 
mimics the design of many commercial cloud storage 
systems including Windows Azure Storage [14] and 
PNUTS, except that PNUTS allows per-object masters 
[17].  The advantages of this primary-update approach, 
compared to a multi-master update scheme, are two-
fold.  First, the primary site is an authoritative copy for 
answering strongly consistent Gets.  Second, the 
system avoids conflicts that might arise from different 
clients concurrently writing to different servers. 

The primary site could consist of a fault-tolerant 
cluster of servers, but any such structuring is invisible 
to clients.  The initial Pileus prototype, which is used 
for the evaluations in section 5, designates a single 
node as the primary.  Clearly, this has limited fault-
tolerance that could be addressed by well-known 
techniques such as the Paxos-based scheme used in 
Spanner [19] or chain replication [41].  As an example, 
we have built a second version of Pileus in which each 
“node” is a Windows Azure Storage account utilizing 
strongly consistent three-way replication.    

Secondary nodes eventually receive all updated 
objects along with their update timestamps via an 
asynchronous replication protocol.  Because this 

Rank Consistency Latency Utility 
1. bounded(300) 200 ms 0.00001 
2. bounded(300) 400 ms 0.000008 
3. bounded(300) 600 ms 0.000005 
4. bounded(300) 1000 ms 0.0 

Figure 5. The web application SLA 

Rank Consistency Latency Utility 
1. strong 150 ms 1.0 
2. eventual 150 ms 0.5 
3. strong 1 sec 0.25 

Figure 6. The password checking SLA 







4.6.1 Choosing a target subSLA 
Recall that an SLA consists of an ordered list of 

subSLAs where each subSLA has an application-
provided utility.  The client library’s goal in selecting a 
storage node is to maximize the expected utility.  
Figure 8 illustrates the algorithm used when presented 
with a Get operation and an SLA. 

For each subSLA and each node storing the key 
that is being accessed by the Get, the client computes 
the expected utility that would accrue from sending the 
Get to that node.  This expected utility is the product of 
the PNodeSla function provided by the monitor and the 
utility associated with this subSLA.  The client selects 
the target subSLA with the highest expected utility 
along with the set of nodes that it believes can best 
meet this subSLA at the current time.  If multiple nodes 
offer the same expected utility, the client chooses the 
one that is closest. Alternatively, the client could 
choose one at random to balance the load or pick the 
one that is most up-to-date. 

Note that the application’s top subSLA is not 
always chosen as the target subSLA.  For example, 
consider the shopping cart SLA specified in Figure 4.  
If the second subSLA has a utility that is only slightly 
less than that of the first subSLA and the first subSLA 
has a much lower chance of success, then the client 
will select the second subSLA as its target and choose 
among the nodes that can provide eventually consistent 
data rather than aiming for read-my-writes consistency. 

4.6.2 Determining which subSLA was met  
The client measures the time between sending a Get 

and getting a reply, and uses this round-trip latency 
along with timestamps included in the reply to 
determine whether the target subSLA was met.  The 
client may determine that some higher or lower 
subSLA was satisfied.  

In the response to each Get operation, along with 
the value of the requested data object, a storage node 
includes its current high timestamp.  Given the 
minimum acceptable read timestamps for each 
consistency guarantee, the client can use the 
responding node’s high timestamp to determine what 
consistency is actually being provided for a particular 

Get.  The client uses this actual consistency, along with 
the measured round-trip latency, to determine which 
subSLA was satisfied and returns this indication to the 
Get’s caller.   

Interestingly, a Get may meet a higher subSLA than 
the target subSLA.  For example, revisiting the 
shopping cart SLA, although the client may have 
chosen a node that it believed would provide only 
eventual consistency, the storage node may return an 
object whose version satisfies the read-my-writes 
guarantee as illustrated in Figure 9.  This could very 
well happen in practice when the client has outdated 
information for storage nodes, and hence severely 
underestimates whether a node can meet a guarantee. 

5 Evaluation 
This section describes experiments we conducted to 

evaluate Pileus in a globally distributed datacenter 
environment.  The goal was to verify that adapting 
consistency to different conditions in accordance with 
application-specific SLAs can yield significant benefits 
compared to selecting a fixed consistency. 

5.1 Experimental set-up 
For these experiments, Pileus was run on a research 

test bed connecting private datacenters in different 
parts of the world.  As shown in Figure 10, the primary 
storage node was in England and secondary nodes were 
placed on the U.S. West Coast and in India.  We 
evaluate configurations where the client runs in the 
same datacenter as one of the nodes as well as when it 
is in China.    

The widely used YCSB benchmark [18], which was 
developed for evaluating the performance of cloud-
based key-value stores, provided the workload that we 
used in our experiments.  In this workload, clients 
perform equal numbers of Puts and Gets to a collection 
of 10,000 keys.  We adapted this workload to add the 
notion of sessions.  In particular, we started a session, 
performed 400 Gets and Puts in this session, then 
ended the session and started a new one.   

One client performs all of the Gets and Puts in the 
benchmark.  The origin of the Puts is irrelevant since 
they all are performed on the primary node, and so the 
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Table 2.  Again, Pileus targets the top subSLA when 
the client is in the U.S. or England and always reads 
from the primary.  When the client is in the U.S., 
choosing to read from the remote primary rather than 
the local secondary is almost always the correct 
decision, though occasionally the primary does not 
respond quickly enough, resulting in a .99 average 
utility. When the client is in India, Pileus believes the 
top subSLA to be unattainable since the primary is too 
far away, and thus it targets the second subSLA and 
reads from the local secondary.  The client in China is 
so remote that Pileus forgoes the top two subSLAs and 
targets the third one, causing it to read from the 
primary but delivering only a 0.25 utility; in contrast, 
the Closest strategy always accesses the U.S. and 
receives a zero utility, which is worse than Random’s 
0.08 average utility. 

5.4 Adaptability to network delays 
To explore how well Pileus adapts to latencies that 

change drastically over time, we repeated our 
experiments for the password checking SLA while 
introducing artificial delays in the round-trip times for 
Get operations.  Figure 13 shows the delivered utility 
for Gets performed over a period of almost six minutes.  
Initially, with no added delays, the client (in the U. S.) 
always chooses to go to the primary (in England) for 
the first subSLA but occasionally the primary does not 
respond in time (as previously indicated in Table 2).  
At the point labeled #1 in Figure 13, the latency to the 
primary node was increased by 300 ms; we simply 
added 300 ms to the measured round-trip times that 
were reported to the client.  Such an increase might 
happen in practice if the primary or its 
inbound/outbound network becomes overloaded.  For 
some small period of time (between points #1 and #2 in 
the figure), the client continued to choose the top 
subSLA and continued to send all of its Gets to the 
primary.  None of these Gets returned in time to meet 
the top subSLA but they did satisfy the third subSLA, 
resulting in a utility of 0.25.   

Eventually, the client learned that the primary was 
too far away, switched to the second subSLA, and 
started performing Gets on the local node (between 

points #2 and #3 in the figure).  At point #3, we added 
300 ms to the latency when accessing the local node.  
For some period (between points #3 and #4) the client 
continued to use the local node, but it responded too 
slowly and was too inconsistent to meet any of the 
subSLAs, resulting in a utility of zero.  Note that in this 
case, after receiving a local response, the client could 
have performed the Get at the primary and still have 
met the third subSLA within the specified 1-second 
bound; we are considering adding such a strategy to the 
client library.  At point #4, the client decided correctly 
that only the third subSLA could be met and resumed 
sending Gets to the primary. 

At point #5 we reduced the access latency to the 
local node back to a millisecond, and at point #6 we 
restored the average latency to the primary to the usual 
149 ms.  The client eventually discovers, through 
periodic probes, that it can regularly access its local 
site with low delay, and the client switches back to 
choosing the second subSLA; this switch takes a while 
since the client probes infrequently and has some built-
in hysteresis.  Later, sometime after point #6, the client 
switches to targeting the top subSLA and resumes 
sending Gets to the primary.  This experiment clearly 
demonstrates Pileus’s ability to select a strategy that 
maximizes the delivered utility in response to varying 
network latencies. 

5.5 Sensitivity to utility values 
Finally, to study the sensitivity of our results to the 

utility number included in an SLA, we varied the 
utilities for the password checking SLA in Figure 6.  
We multiplied the utilities of the second and third 
subSLAs by a factor from 2, which places the second 
subSLA on par with the first, to 0.1, which makes the 
top subSLA considerably more valuable.  These results 
are presented in Figure 14.  Observe that different 
utilities affect the relative rankings of the fixed 
selection schemes but Pileus again outperforms them. 

 
Figure 12. Utility of password checking SLA 

Client Target 
SubSLA 

Get from 
U.S. 

Get from 
England 

Get from 
India 

SubSLA 
Met 

Avg. 
Utility 

U.S. 1 0% 100% 0% 99.4% 0.99 
 2 0% 0% 0% 0%  
 3 0% 0% 0% 0.6%  

England 1 0% 100% 0% 100% 1.0 
 2 0% 0% 0% 0%  
 3 0% 0% 0% 0%  

India 1 0% 0% 0% 0% 0.5 
 2 0% 0% 100% 100%  
 3 0% 0% 0% 0%  

China 1 0% 0% 0% 0% 0.25 
 2 0% 0% 0% 0%  
 3 0% 100% 0% 100%  

Table 2. Breakdown of Pileus client decisions for  
password checking SLA 



5.6 Summary 
In all of the configurations that we measured, Pileus 

delivered the same utility as the best performing fixed 
consistency scheme.  As expected, always requesting 
strong or always requesting eventual consistency 
yielded suboptimal service in some configurations. 
Pileus was able to adapt the service provided to clients 
in different locations to best meet the target SLA. 

6 Extensions and future work 
6.1 Enhanced monitoring 

Although the monitoring performed in Pileus does 
not consume many resources, especially when it 
piggybacks on normal traffic, it could potentially be 
improved.  For one thing, clients could adapt the rate at 
which they send periodic probes based on the data they 
obtain.  If the latency to a node is fairly stable and the 
consistency predictable, then clients could probe less 
frequently.   

Even if communication latencies are well-known, 
probes are used to determine the staleness of a storage 
node.  Clients could potentially predict a node’s high 
timestamp based on the time that it last communicated 
with the node as well as knowledge about the update 
rates for various objects and the replication protocol’s 
propagation delay. 

Additionally, clients could share monitoring 
information with other clients in the same datacenter.  
We have considered having a distributed monitoring 
service that is detached from individual clients, perhaps 
with monitors in every region of the world, or having 
clients gossip monitoring information among 
themselves.  Exploring the relationship between the 
amount of traffic generated by various monitoring 
schemes and the accrued benefits is an interesting 
subject for future work.  

6.2 SLA-driven reconfiguration 
Currently, we assume that the number and 

placement of storage nodes is outside of Pileus’s 
control.  However, given knowledge of the SLAs being 
used by various clients, the system could make 
reasonable re-configuration decisions.  For example, 
Pileus might automatically move the primary to a 

different datacenter in order to maximize the utility 
delivered to its clients.  If one client has stringent 
latency requirements but loose consistency needs, a 
new secondary storage node could be placed nearby.  
Similarly, the rate at which updated data objects are 
propagated from the primary to secondary nodes could 
be adjusted based on the clients’ desired consistency 
and proximity.  We are currently investigating SLA-
driven reconfiguration. 

6.3 Parallel Gets 
The current system sends each Get operation to a 

single node based on utility estimates.  This policy 
minimizes client costs when storage providers charge 
for each operation.  However, clients could receive 
more rapid responses and more up-to-date data when 
sending a Get in parallel to two or more nodes that are 
predicted to provide roughly the same service, 
particularly in cases where changing conditions lead to 
poor utility estimates.  Existing methods for computing 
expected utilities could be used in a cost-benefit 
analysis to explore multi-node selection schemes. 

6.4 Multi-site Puts 
Our current implementations perform Put operations at 
a single primary site, i.e. a cluster of storage nodes 
within a datacenter.  Generally, the cost of Put 
operations can be traded off against the cost of strongly 
consistent Get operations.  If the system synchronously 
sends Puts to a larger collection of primary nodes, 
possibly nodes that are replicated across datacenters or 
even across regions, the expected latency of strong 
Gets is reduced (and the availability of such operations 
increases).  A wider distribution of primary nodes can 
positively affect Gets with other consistency choices as 
well, except for eventual consistency.  A thorough 
study of these Put/Get trade-offs remains future work.   

7 Related work 
The design of Pileus adopts and extends prior work 

on cloud storage systems, variable consistency, and 
service level agreements. However, we are not aware 
of other systems that combine consistency guarantees 
with latency targets as part of a storage service SLA.   

 
Figure 13. Behavior under varying latency  

Figure 14. Behavior under varying utility 



Numerous cloud storage systems have been 
designed with a variety of data models, read and write 
operations, replication protocols, consistency, and 
partitioning schemes.  Some key-value store probably 
exists with every imaginable combination of features 
and occupies every point in the space of consistency, 
scalability, availability, cost, and performance trade-
offs.  These include Dynamo [20], SimpleDB [5], 
BigTable [16], PNUTS [17][35], Cassandra [27], 
Windows Azure [14], Spanner [19], and many more 
[15].  Pileus borrows from many of these systems its 
simple Get/Put interface, key-range partitioning, geo-
replication, and primary-update model.   

Researchers have observed the need for more 
flexible storage designs that permit tradeoffs between 
consistency and availability [33].  Some cloud storage 
systems offer both strongly consistent and eventually 
consistent read operations [22][43][17][2][8], and 
papers have suggested switching between these options 
based on application classes [26][45].  Studies have 
shown that even eventually consistent systems 
frequently deliver strongly consistent data [11][44].  
Researchers have proposed consistency models with 
guarantees that lie between these two extremes, such as 
session guarantees [36], continuous consistency 
[3][9][46], RedBlue consistency [29], and causal 
consistency [30], and many have been shown to be 
useful in diverse applications [10][36][42][23][34]. 
However, very few of these are being used in current 
systems.  To the best of our knowledge, Pileus is the 
first cloud storage system to offer a broad choice of 
consistency guarantees, and allow the requested 
consistency to vary for each Get even when accessing 
the same data. 

Service level agreements are an integral part of 
cloud services, including storage and networking. But 
such SLAs mainly focus on performance metrics and 
availability.  For example, a typical SLA for an 
Amazon service guarantees “a response within 300ms 
for 99.9% of its requests” [20]. Others have suggested 
including consistency in SLAs [7] and developed 
algorithms for checking consistency [6][21], but Pileus 
is the first system to actually support consistency-based 
SLAs. 

8 Conclusions 
The Pileus storage system’s main contribution is 

support for consistency-based SLAs that allow 
developers to declaratively specify their needs using a 
choice of consistency guarantees coupled with latency 
targets.  Get operations access data that is partitioned 
and replicated among servers in all parts of the world 
while conforming to such SLAs.  Consistency-based 
SLAs allow applications that were written to tolerate 
eventual consistency, as are many cloud applications 

today, to benefit from increased consistency when the 
performance cost is not excessive.  When conditions 
are favorable, such as when the application is running 
in the same datacenter as up-to-date replicas, Pileus is 
able to deliver ideal consistency and latency to the 
application, and when conditions are less favorable, 
such as when nodes fail or become overloaded or 
clients are far from their frequently accessed data, the 
application’s SLA indicates how best to adapt. 

Pileus cleanly separates the mechanism for finding 
versions of a data object with the desired consistency 
from the techniques for selecting servers that can meet 
an SLA given existing network and server 
characteristics.  Timestamp mechanisms support a 
broad range of consistencies while monitoring permits 
clients to independently select subSLAs that maximize 
the utility delivered to their local applications. 

While our early experimental results show that 
consistency-based SLAs can indeed improve 
application-specific levels of service, further studies 
are needed to explore the full space of practical SLAs.  
Future work will investigate additional schemes for 
monitoring/predicting the lag and performance of 
storage nodes, expanding the choice of consistency 
guarantees, and automatically configuring services 
based on their applications’ SLAs. 
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