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ABSTRACT

We study the degree of synchrony required to imple-
ment the leader election failure detector Ω and to solve
consensus in partially synchronous systems. We show
that in a system with n processes and up to f process
crashes, one can implement Ω and solve consensus pro-
vided there exists some (unknown) correct process with
f outgoing links that are eventually timely. In the spe-
cial case where f = 1, an important case in practice,
this implies that to implement Ω and solve consensus it
is sufficient to have just one eventually timely link —
all the other links in the system, Θ(n2) of them, may
be asynchronous. There is no need to know which link
p→ q is eventually timely, when it becomes timely, or
what is its bound on message delay. Surprisingly, it is
not even required that the source p or destination q of
this link be correct: either p or q may actually crash,
in which case the link p → q is eventually timely in a
trivial way, and it is useless for sending messages. We
show that these results are in a sense optimal: even if
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every process has f −1 eventually timely links, neither
Ω nor consensus can be solved.

We also give an algorithm that implements Ω in sys-
tems where some correct process has f outgoing links
that are eventually timely, such that eventually only f
links carry messages, and we show that this is optimal.
For f = 1, this algorithm ensures that all the links,
except for one, eventually become quiescent.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; D.4.5 [Operating Systems]: Relia-
bility; F.2 [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous

General Terms

Algorithms, Design, Reliability, Theory

Keywords

Distributed systems, fault tolerance, asynchronous sys-
tems, synchronous systems, partially synchronous sys-
tems, failure detector, leader election, consensus

1. INTRODUCTION

Consider a system S of n processes where processes
are synchronous and links are reliable, but one process
may crash. How much link synchrony is necessary to
solve consensus in S? From the results in [11, 10, 9],
we know that: (a) if all the links are asynchronous,
then consensus cannot be solved, and (b) if all the links
are eventually timely (denoted �-timely) then consensus
can be solved.1

1Roughly speaking, a link is eventually timely if there is some
bound δ and a time after which every message sent to a correct
process is received within δ units of time. If this bound holds from
time 0, we say that the link is timely.
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In this paper we show that to solve consensus in S, it
is sufficient to have just one, directed link p→ q that is
�-timely — all the other links, Θ(n2) of them, can be
asynchronous. There is no need to know which link is
�-timely, when it becomes timely, or what is its bound
on message delay. Surprisingly, it is not even required
that the source p or destination q of this link be correct:
p or q may actually crash, in which case the link p→ q
is �-timely in a trivial way, and it is useless for send-
ing messages! Nevertheless, the existence of one such
directed link is sufficient for solving consensus in S.

The above result assumes at most one process may
crash, i.e., f = 1. What happens in the general case
f ≥ 1? We also explore this question, and do so with
respect to two related problems: solving consensus,
and implementing Ω — a failure detector that can be
considered as an eventual leader elector [6].

Roughly speaking, with Ω every process p has a local
variable leaderp that contains the identity of a single
process that p currently trusts to be operational (p con-
siders this process to be its current leader). Initially,
different processes may have different leaders, but Ω
guarantees that there is a time after which all processes
have the same, non-faulty leader. Failure detector Ω is
important for both theoretical and practical reasons: it
has been shown to be the weakest failure detector with
which one can solve consensus [6], and it is the failure
detector used by several consensus algorithms, includ-
ing some that are used in practice (e.g., [12, 13, 14, 17,
19]).

To state our results, we define the notions of j-source
and �j-source, as follows. A �j-source is a process p
that has at least j output links p→ p1, p→ p2, . . . , p→
pj that are �-timely. It is not required that p or any of
the p1, p2, . . . , pj be correct processes. But if p is a
correct process, we say that p is a correct �j-source. A
j-source is a process p that has at least j output links
that are timely. A correct j-source is a j-source that is
a correct process. Note that, by definition, a j-source is
also a (j − 1)-source and a �j-source.

Henceforth, we consider systems with n synchronous
processes f of which may crash (n > f ≥ 1). More-
over, to strengthen our possibility results, we assume
that links can drop messages but are fair lossy [3]: rough-
ly speaking, messages carry a type, and if a process
sends an infinite number of messages of a type through
a link then the link delivers an infinite number of mes-
sages of that type. The question is how much link syn-
chrony is needed to implement Ω or solve consensus in

such systems. In this paper, we show the following:

• Ω can be implemented if there is at least one cor-
rect �f -source. The identity of the �f -source does
not have to be known (different runs can have dif-
ferent �f -sources). Furthermore, it is not required
that the destination processes of the �f -source be
correct: some (or even all) of them may crash.

• Similarly, for n > 2f , consensus can be solved if
there is at least one correct �f -source.

• For the special case that f = 1, a common as-
sumption in practice, to implement Ω or solve con-
sensus we need only one �-timely link p → q.
Furthermore, there is no need to know which link
it is, and p or q is allowed to crash.

• The above results are in some sense optimal: nei-
ther Ω nor consensus can be solved if processes
are “only” (f − 1)-sources. This impossibility re-
sult holds even if all processes are (f−1)-sources
and all links are reliable.

We also study the communication overhead of imple-
mentations of Ω. The first algorithm that we give to
implement Ω (for systems with up to f crashes and
at least one correct �f -source) is simple but not ef-
ficient: every process sends messages to all the other
processes, forever. In other words, all the O(n2) links
transport messages, forever. This is undesirable and
can be avoided. Intuitively, after a process becomes the
common leader,2 it must periodically send messages
forever (because if it crashes, processes must be able
to notice this failure and chose a new leader); but from
then on no other process needs to be monitored. Thus,
after processes agree on a common leader, no process
other than the leader should have to send messages. In
fact, several papers have focused on reducing the com-
munication overhead required to implement Ω in vari-
ous systems [16, 1, 3], so that only n − 1 links carry
messages forever.

In this paper, we give an algorithm for Ω such that
eventually only f links carry messages. This algorithm
works for systems with reliable links where at most
f < n process may crash and there is at least one (un-
known) correct �f -source. A simple proof shows that
in such systems, no implementation of Ω can ensure
that fewer than f links carry messages forever, and so
2Note that processes may never know whether this has already oc-
curred.
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our algorithm is communication-optimal in this sense.
It is worth noting that in the special case that f = 1,
this algorithm for Ω requires only one unknown di-
rected link to be timely (any one of its end-points may
crash, and all the other links can be asynchronous), and
eventually only one directed link carry messages (all
the other links become quiescent).

Related work

Related work concerns solving consensus and imple-
menting Ω in various types of partially synchronous
systems, as well as the use of Ω to solve consensus.
It is well-known that consensus cannot be solved in
a completely asynchronous system (where both pro-
cesses and links are asynchronous)[11]. Following this
impossibility result, [9, 10] proposed several models
of partial synchrony and for each one, they determined
whether consensus was solvable. In particular, it was
established that if all links are asynchronous then con-
sensus remains unsolvable even if all processes are syn-
chronous; on the other hand, if all links are eventually
timely, then consensus can be solved.

Another approach to circumvent the impossibility re-
sult of [11] is the use of unreliable failure detectors [7].
In particular, Ω was shown to be the weakest failure
detector that can be used to solve consensus in systems
with a majority of correct processes [6], and it is the
failure detector required by several algorithms [5, 12,
13, 14, 15, 17, 19]. For these reasons there is growing
interest in implementing Ω efficiently in various types
of partially synchronous system [16, 1, 3].

Several papers have focused on reducing the commu-
nication overhead of implementations of Ω. In partic-
ular, [16, 1, 3] give algorithms that require only n −
1 links to carry messages forever. These algorithms,
which tolerate any number of process crashes, differ by
the strength of the assumptions they make on the under-
lying systems: in [16] all links are �-timely in both di-
rections, in [1] all links to and from at least one correct
process are �-timely, and in [3] all links from at least
one correct process are �-timely. These algorithms also
differ by the type of link failures, if any, they tolerate.

A different approach to the implementation of fail-
ure detectors was introduced in [20]. Instead of as-
suming (eventual) bounds on process and communica-
tion delays, it assumes that the message passing system
has the following behavior: roughly speaking, there is
a correct process p and a set Q of f + 1 processes
such that if processes repeatedly wait to receive mes-

sages from n−f processes (i.e., they proceed in “asyn-
chronous rounds”), then eventually the messages from
p are always among the first n − f messages received
by each process in Q. This assumption is incompa-
rable to assuming the existence of an f -source (or a
�f -source): even if all processes are f -sources, every
correct process may be excluded infinitely often from
the sets of n − f messages that processes in Q receive
first (e.g., this would occur if all the links have bounded
delays, but the currently slowest one rotates forever in
a “round-robin” fashion among all the links).

[18, 21] defined families of failure detectors, denoted
Sk and ✸Sk, that have strong completeness and (even-
tual) limited accuracy; roughly speaking, parameter k
is the number of processes for which accuracy applies.
[18, 21] show how to use Sk and ✸Sk to solve k-set
agreement problem, and [4] determines under which
conditions (in terms of the maximum number of pro-
cess crashes f ) Sk and ✸Sk can be transformed to S
and ✸S — two failure detectors whose accuracy ap-
plies to all processes [7]. This later work is similar but
incomparable to the lower bounds in this paper: it con-
cerns failure detector transformations in purely asyn-
chronous systems, while the lower bounds derived here
refer to various types of partially synchronous systems
(e.g., our lower bounds refer to systems where every
process is an (f − 1)-source — a property that cannot
be expressed in terms of Sk or ✸Sk failure detectors).

Roadmap

In Section 2, we describe our model and define the
leader failure detector Ω. In Section 3, we describe an
algorithm for Ω for systems with up to f crashes where
links are fair lossy, but some correct �f -source exists;
this result immediately implies that, when n > 2f ,
consensus can be solved in such systems [2]. In Sec-
tion 4, we show that the above results are optimal in a
precise sense: even if all processes are (f −1)-sources,
neither Ω nor consensus can be solved. In Section 5, we
give an algorithm for Ω (for systems where links are
reliable) such that eventually only f links carry mes-
sages, and we show that this is optimal. Due to the
space restrictions, proofs are omitted; they will be in-
cluded in the full version of this paper.

2. INFORMAL MODEL

We consider distributed systems with n ≥ 2 pro-
cesses Π = {0, . . . , n− 1} that can communicate with
each other by sending messages through a set of di-
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rected links Λ. To simplify the exposition of the model,
we assume the existence of a discrete global clock which
is not accessible to the processes. The range T of the
global clock ticks is the set of natural numbers.

Processes. Processes execute by taking steps. In a
step a process can either receive a set of messages and
then change its state, or it can send a message and then
change its state.3

A process can fail by permanently crashing, in which
case it stops taking steps. A process failure pattern F
is a function from T to 2Π. Intuitively, F (t) denotes
the set of processes that have crashed through time t.
Once a process crashes, it does not recover, i.e., ∀t :
F (t) ⊆ F (t + 1). We say that p crashes (or is faulty)
in F if p ∈ F (t) for some t; otherwise we say that p is
correct in F . A process p is alive at time t if p �∈ F (t).

We assume there is a lower and upper bound on the
rate of execution (number of steps per time unit) of any
non-faulty process. Processes have local clocks that are
not necessarily synchronized, but we assume that they
can accurately measure intervals of time (it is easy to
extend our results to local clocks with bounded drift
rates).

Links. We assume that the network is fully connected,
i.e., Λ = {(p, q) | p, q ∈ Π and p �= q}. The directed
link from process p to process q is denoted by p →
q. Every link p → q satisfies the following integrity
property: q receives a message m from p at most once,
and only if p previously sentm to q.4

In addition to integrity, links may have other properties
concerning their degree of reliability and synchrony.
We consider four types of links.

A link p → q is reliable if it satisfies integrity and
also the following no loss property: If p sends a mes-
sage m to q and q is correct, then q eventually receives
m from p.

We also consider links that can intermittently drop
messages, provided that the links satisfy a fairness prop-
erty. To define this property, we assume that messages
carry a type in addition to its data. Fairness requires
that if a process sends an infinite number of messages
of a type through a link then the link delivers an infi-
nite number of messages of that type. More precisely,

3Our lower bounds also hold in a stronger model in which a process
can receive, change state, and send in a single atomic step.
4We assume that messages are unique, e.g., each message contains
the id of the sender and a sequence number (this is implicit in all
our algorithms).

we assume that each messagem consists of a pairm =
(type , data) ∈ Σ∗ × Σ∗ where Σ = {0, 1}. A link
p → q is fair lossy if it satisfies integrity and also fair-
ness: For every type , if p sends infinitely many mes-
sages of type type to q and q is correct, then q receives
infinitely many messages of type type from p. Note
that a reliable link is also fair lossy.

We consider two synchrony properties (the first is
stronger than the second). A link p → q is timely
if it satisfies integrity and also timeliness: There ex-
ists δ such that if p sends a message m to q at time
t and q is correct, then q receives m from p by time
t + δ. The maximum message delay δ associated with
a timely link is not known.

A link p → q is �-timely if it satisfies integrity and
also �-timeliness: There exists δ and a time t such that
if p sends a message m to q at time t′ ≥ t and q is
correct, then q receives m from p by time t′ + δ. The
maximum message delay δ and the time t after which it
holds are not known. Moreover, messages sent before
time t can be lost.5

Note that a timely link is also reliable, and a �-timely
link is also fair lossy. Moreover, a link (that satisfies
integrity) is trivially timely or �-timely if one of its end-
point crashes. More precisely, link p → q is trivially
timely if p is crashed at time 0 or q is faulty. Similarly,
link p → q is trivially �-timely if p crashes at time
t > 0.

In summary, links can be reliable, fair lossy, timely
or �-timely. To indicate which links have which proper-
ties, we introduce a link type function L that maps each
link in Λ to {R,FL, T,ET}: For link � = p → q,
L(�) = R, FL, T or ET implies that � is reliable, fair
lossy, timely or �-timely, respectively.

Behaviors: A behavior B = (F,L) combines a pro-
cess failure pattern and a link type function: it indicates
which processes (if any) fail, and at which time they do;
and it also indicates which links are reliable, fair lossy,
timely or �-timely. We assume that L is consistent with
F : a link p→ q such that p and/or q crashes according
to F is timely or �-timely according to L, depending
on the crash time(s) as explained above.

A system is characterized by a set of possible behav-
iors: these describe the process failures and the link
types that can occur in a run of this system.

Sources. A process p is a j-source [�j-source] in a
5This �-timeliness property corresponds to the M3 model of par-
tial synchrony defined in [7].
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behavior B = (F,L) if p has j output links that are
timely [�-timely] according to L. We say that a system
has a j-source [�j-source] if every behavior B of that
system has a j-source [�j-source].

Note that j-sources and the destinations of j-sources
are not necessarily correct processes. More precisely,
suppose that in a given behavior B = (F,L), p is a j-
source, and p1, . . . , pj are the processes such that, for
every 1 ≤ k ≤ j, the link p → pk is timely. It is still
possible for p and/or some of the pk’s to be faulty in
F . But when p is a correct process, we say that p is
a correct j-source. The same remarks applies to any
�j-source and its corresponding destination processes.

The leader failure detector Ω. The formal definition
of failure detector Ω is given in [7, 6]. Informally, at
each process p, the failure detector module of Ω at p
outputs the identity of a single process, denoted leaderp,
such that the following property holds:

• There exists a correct process � and a time after
which, for every alive process p, leaderp = �.

If at time t, leaderp contains the same correct process �
for all alive processes p, then we say that � is the leader
at time t. Note that at any given time processes do not
know if there is a leader; they only know that eventually
a leader emerges and remains.

3. IMPLEMENTING Ω AND CONSENSUS
WITH A CORRECT �f -SOURCE

In this section we consider systems where links are
fair lossy, up to f processes may crash, and at least
one correct process is an �f -source (the identity of this
�f -source is unknown, and different runs may have dif-
ferent �f -sources). We show that in such systems one
can implement Ω and solve consensus (for consensus
n > 2f is also required). If f = 1, an important case in
practice, this implies that the existence of a single un-
known �-timely link p → q is sufficient to implement
Ω and solve consensus, even if process p or q crashes.

3.1 Implementing Ω

Figure 1 shows an algorithm for Ω for systems where
links are fair lossy, up to f processes may crash and at
least one correct process is an �f -source. Each process
p keeps a monotonically nondecreasing value counter[q]
for each process q. Process p chooses as its leader � the
process with smallest counter[�], breaking ties using
the process id. Each process periodically sends to other

processes an ALIVE message with its counter vector.
When a process receives such a message, it updates its
counter vector by taking the component-wise max. If a
process p has not received ALIVE from q for Timeout[q]
time units, it increments Timeout[q], in case the time-
out was premature, and then sends (SUSPECT, q) to
all6. When a process p receives (SUSPECT, q) from r,
it adds r to the list of processes that have suspected q.
If the size of such a list is at least n−f , p resets the list
to ∅, and increments counter[q].

THEOREM 1. For all n > f , Ω can be implemented
in systems with fair lossy links and n processes where
up to f processes may crash and at least one (unknown)
correct process is a �f -source.

Now consider a system where up to f processes may
crash, no correct process is a �f -source, but there ex-
ists a correct process p and f other distinct processes
such that p is connected to the f processes through �-
timely links and correct processes. Then, by simple
flooding of messages, we can simulate a system where
p is actually a correct �f -source, and then we can use
the algorithm of Figure 1 to implement Ω.

COROLLARY 2. For all n > f , Ω can be imple-
mented in systems with fair lossy links and n processes
where up to f processes may crash and at least one
(unknown) correct process is connected to f other pro-
cesses through a path of �-timely links and correct pro-
cesses.

3.2 Solving consensus

It is well-known that Ω can be used to solve con-
sensus if n > 2f and links are reliable [7, 6] or fair
lossy [2]. Together with Theorem 1, this implies that
having at least one correct �f -source is sufficient to
solve consensus:

THEOREM 3. For all n > 2f , consensus can be
solved in systems with fair lossy links and n processes
where up to f processes may crash and at least one
(unknown) correct process is a �f -source.

By using message flooding we also get the following:

COROLLARY 4. For all n > 2f , consensus can be
solved in systems with fair lossy links and n processes
6By convention, when a process sends a message to all, it sends the
message to all processes except itself and it simulates sending to
itself, that is, the process executes the code that handles the receipt
of the message.
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CODE FOR EACH PROCESS p:

on initialization:
1 ∀q �= p : Timeout[q]← η + 1
2 ∀q : counter[q]← 0, suspect[q]← ∅
3 ∀q �= p : reset timer(q) to Timeout[q]
4 start tasks 0, 1 and 2

task 0:
5 repeat forever
6 leader← � such that (counter[�], �) = min{(counter[q], q) : q ∈ Π}
task 1:
7 repeat forever
8 send (ALIVE, counter) to all processes except p every η time

task 2:
9 upon receive (ALIVE, c) from q do
10 for each r ∈ Π do counter[r]← max{counter[r], c[r]}
11 reset timer(q) to Timeout[q]

12 upon expiration of timer(q) do
13 Timeout[q]← Timeout[q] + 1
14 send (SUSPECT, q) to all
15 reset timer(q) to Timeout[q]

16 upon receive (SUSPECT, q) from r do
17 suspect[q]← suspect[q] ∪ {r}
18 if |suspect[q]| ≥ n− f then
19 suspect[q]← ∅
20 counter[q]← counter[q] + 1

Figure 1: Implementing Ω in systems with fair lossy links and at least one correct �f -source.

where up to f processes may crash and at least one
(unknown) correct process is connected to f other pro-
cesses through a path of �-timely links and correct pro-
cesses.

3.3 The special case f = 1

Theorems 1 and 3 have a surprising corollary for sys-
tems where at most one process may crash — a com-
mon assumption in practice. For such systems, these
theorems imply that the existence of a single, unknown
�-timely link p → q is sufficient for implementing Ω
and solving consensus, even if p or q crash. To see
this, suppose link p → q is �-timely (in any given be-
havior). There are two possible cases. If p is correct
(in that behavior), then p is a correct �1-source, and by
Theorems 1 and 3, Ω can be implemented and consen-
sus can be solved. If p is faulty, then, since f = 1,
q must be correct (in this behavior). Consider the link
q → p. Since p eventually crashes, this link is triv-

ially �-timely. So, q is a correct �1-source, and again
by Theorems 1 and 3, Ω can be implemented and con-
sensus can be solved. Thus we have the following:

COROLLARY 5. Consider any system with n > 2,
f = 1, and fair lossy links. If there is (at least) one
unknown directed link that is �-timely, then Ω can be
implemented and consensus can be solved. This holds
even if the source or destination of that link crashes.

4. (f−1)-SOURCES ARE NOT SUFFICIENT
FOR IMPLEMENTING Ω OR SOLVING
CONSENSUS

Consider systems where n > f ≥ 1. In the previ-
ous section, we showed that having at least one correct
�f -source is sufficient to implement Ω and solve con-
sensus (even if links are fair lossy). In this section, we
state that this is a necessary condition, in the following
sense: neither Ω nor consensus can be solved in a sys-
tem where processes are “only” (f − 1)-sources. This
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holds even if we assume that all links are reliable, and
all processes are (f − 1)-sources.

To state these impossibility results succinctly, it is
convenient to define system Sn,f,f−1. This is the sys-
tem with n processes that has all the possible behaviors
such that up to f processes may crash, every process is
a f − 1-source, and all the links are reliable. Thus, in
every run of Sn,f,f−1, every process has at least f − 1
outgoing links that are timely.

THEOREM 6. For all n > f ≥ 1, Ω cannot be im-
plemented in system Sn,f,f−1.

THEOREM 7. For all n > f ≥ 1, consensus cannot
be solved in system Sn,f,f−1.

5. COMMUNICATION-OPTIMAL IMPLE-
MENTATION OF Ω

The algorithm that implements Ω in Figure 1 is sim-
ple but inefficient: it requires all n(n−1) links to carry
message forever. In this section, we describe an algo-
rithm for Ω such that eventually only f links carry mes-
sages. This algorithm, shown in Figure 2, works in sys-
tems with reliable links where up to f processes may
crash and at least one correct process is a f -source. 7

This algorithm is communication-optimal in the sense
that every implementation of Ω for such systems re-
quires at least f links to carry messages forever in some
runs (see Theorem 9).

Like in the previous algorithm of Figure 1, in the
algorithm of Figure 2 each process p keeps a vector
counterp[q] of integers, which roughly counts the num-
ber of times that q has been suspected by n − f pro-
cesses. However, unlike the previous algorithm, the re-
sponsibility to increment this counter is delegated to
process q. More precisely, when a process r has seen
n − f SUSPICIONS for q, it sends an ACCUSATION to
q, telling q to increment its own counterq[q].

Like in the previous algorithm, the counterp[q] vector
is used to choose the leader. Unlike the previous algo-
rithm, the leader that p chooses is not the process q with
smallest counterp[q] among all processes in the sys-
tem, but only among the processes in a set Contendersp.
7Note that for links that do not lose messages, the timeliness
and �-timeliness properties are actually equivalent (this is because
these properties do not assume that the bound on message delay is
known). Thus, a reliable link is �-timely if and only if it is timely.
So in systems where all links are reliable, as we assume in this sec-
tion, a process is a �f -source if and only if it is an f -source. For
brevity, we express our results in this section in terms of f -sources.

This set initially has only p, and it may later change as
p receives ALIVE and SUSPICION messages from other
processes.

A process p keeps sending ALIVE messages to in-
dicate that it is alive. Unlike the previous algorithm,
these messages do not have the complete counter vec-
tor, but only the entry for p. Moreover, not all processes
keep sending ALIVE forever: p only sends ALIVE if p
considers itself to be the leader. Thus, p may volun-
tarily choose to stop sending ALIVE. When that hap-
pens, other processes will time out on p and will sub-
sequently send an ACCUSATION to p. We would like
p to increment its counterp[p] only when the messages
from p are slow, rather than when p voluntarily stops
sending ALIVE.8 To do so, p keeps a current phase
number php[p] for itself, and a process q keeps its cur-
rent estimate of p’s phase in phq[p]. The ALIVE mes-
sages from p includes not only p’s counter, but also
p’s phase. When q receives such a message, it updates
phq[p]. SUSPICION and ACCUSATION also carry both
a phase number and counter number. If p receives an
ACCUSATION with a phase and counter that matches
p’s own (called an up-to-date ACCUSATION), p accepts
the message an increments its counter. Else p simply
ignores it. In this way, when p voluntarily stops send-
ing ALIVE messages, p can ignore consequent ACCU-
SATIONS by incrementing its phase.

When process p sends ALIVE, it does not send to
all. Since there are only f timely links, p only sends
to f processes. But since p does not know which of
its links are timely, it has to guess. It does so by pick-
ing an arbitrary set of f processes and, if p later learns
that it picked incorrectly, it switches to a different set.
More precisely, let Q[p, 0], Q[p, 1], . . . , Q[p,m − 1]
be an enumeration of all subsets of f processes not
containing p. The number of such subsets is m =(
n−1

f

)
. Process p rotates over these subsets using its

counterp[p] variable modulo m. When p increments
its counter or its phase, it sends one ALIVE to all pro-
cesses (doing so is necessary so that all processes are
informed of the new counter and phase of p). After-
wards, p keeps sending ALIVE only to processes in
Q[p, counterp[p] mod m].

THEOREM 8. For all n > f , the algorithm in Fig-
ure 2 implements Ω in systems with reliable links and
n processes where up to f processes may crash and
at least one (unknown) correct process is an f -source.
8It turns out that if we did not do so, the algorithm would fail.
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CODE FOR EACH PROCESS p:

on initialization:
1 ∀q �= p : Timeout[q]← η + 1
2 ∀q �= p : timer(q)← off
3 ∀q : ph[q]← 0; counter[q]← 0
4 Contenders← {p}
5 leader← p
6 last← (−1,−1)
7 start tasks 0, 1 and 2

task 0:
8 repeat forever
9 leader← � such that (counter[�], �) = min{(counter[q], q) : q ∈ Contenders}
task 1:
10 repeat forever
11 while leader = p do
12 if last �= (ph[p], counter[p]) then
13 send (ALIVE, p, ph[p], counter[p]) to all processes except p
14 last← (ph[p], counter[p])
15 else send (ALIVE, p, ph[p], counter[p]) to the processes in Q[p, counter[p] mod

(
n−1

f

)
] every η time

16 ph[p]← ph[p] + 1
17 send (ALIVE, p, ph[p]− 1, counter[p]) to all processes except p
18 while leader �= p do nop

task 2:
19 upon receive (ALIVE, q, i, c) from r do
20 if it is the first receipt of (ALIVE, q, i, c) then
21 send (ALIVE, q, i, c) to all processes except p, q and r
22 if (i, c) ≥ (ph[q], counter[q]) then
23 ph[q]← i
24 counter[q]← c
25 reset timer(q) to Timeout[q]
26 if did not receive (SUSPICION, q, i, c) from n− f processes then
27 Contenders← Contenders∪ {q}
28 upon expiration of timer(q) do
29 if did not previously send (SUSPICION, q, ph[q], counter[q]) then
30 send (SUSPICION, q, ph[q], counter[q]) to all processes except q
31 Timeout[q]← Timeout[q] + 1

32 upon receive (SUSPICION, r, i, c) do
33 if received (SUSPICION, r, i, c) from n− f processes and

did not previously send (ACCUSATION, r, i, c) then
34 send (ACCUSATION, r, i, c) to r
35 Contenders← Contenders− {r}
36 upon receive (ACCUSATION, p, i, c) do
37 if ph[p] = i and counter[p] = c then
38 counter[p]← counter[p] + 1

Figure 2: Communication-optimal implementation of Ω for systems with reliable links and at least one correct
f -source.
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Moreover, there is a time after which only f links carry
messages (these are a subset of the links from the elected
leader).

The above algorithm is communication-optimal in the
following sense:

THEOREM 9. For all n > f ≥ 1, in a system with
reliable links and n processes where up to f processes
may crash and some unknown correct process is an
f -source, any implementation of Ω requires at least
f links to carry messages forever in every failure-free
run.

From Theorems 8 and 9, we have the following:

COROLLARY 10. For all n > f ≥ 1, the algorithm
in Figure 2 is a communication-optimal implementa-
tion of Ω in systems with reliable links and n processes
where up to f processes may crash and at least one
(unknown) correct process is an f -source.

6. A FINAL REMARK

In this paper, we showed how to implement Ω in
systems with limited link synchrony (namely, systems
with up to f crashes and at least one correct �f -source),
and we gave a communication-optimal implementation
of Ω for such systems. We could have instead imple-
mented Ω in these systems with the following three-
step approach: first showing how to implement ✸Sf ,
the limited accuracy failure detector introduced in [18,
21], then transforming ✸Sf into ✸S using the algo-
rithm given in [4], and finally transforming ✸S into Ω
using the algorithm given by Chu in [8]. We believe
that the direct implementation of Ω given in Figure 1
is much simpler and clearer than the one obtained by
the above approach. Moreover, the implementation of
Ω that we give in Figure 2 is much more efficient: after
the leader is elected only f links carry messages, while
the implementation of Ω obtained by the three-step ap-
proach requires that n(n− 1) links send messages for-
ever.
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