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Abstract We study the feasibility and cost of implementinghat eventually onlyone process (the elected leader) sends
Q — a fundamental failure detector at the core of many ahessages.

gorithms — in systems with weak reliability and synchrony Some recent experimental results indicate that two of
assumptions. Intuitively{2 allows processes to eventualljthe algorithms forQ described in this paper can be used
elect a common leader. in dynamically-changing systems and work well in prac-

We first give an algorithm that implemenisin a weak tice [36].

systemS where (a) except for some unknown timely pro-

cesss, all processes may be arbitrarily slow or may crash,

and (b) only the output links of are eventually timely (all -
other links can be arbitrarily slow and lossy). Previousl Introduction

known algorithms forQ worked only in systems that are _ o
strictly stronger thar in terms of reliability or synchrony Failure detectors are basic tools of fault-tolerant distied

assumptions. computing that can be used to solve fundamental problems
We next show that algorithms that impleméntin sys- such as consensus, atomic broadcast, and group member-

tem S are necessarily expensive in terms of communicghip. For this reason there has been growing interest in the

tion complexity: all correct processes (except possiblg)onmplementation of failure detectors [2,4,5,10, 12,1922,

must send messages forever; moreover, a quadratic nunsr 7—31, 35].

of links must carry messages forever. This result holds even One failure detector of particular interest2§8]. Rough-

for algorithms that tolerate at most one crash. ly speaking, withQ every proces$ has a local variable,
Finally, we show that with a small additional assumptioeienotedeader, that contains the identity of a single pro-

to systemS — the existence of some unknown correct pras€ss thap currently trusts to be operationad ¢onsiders this

cess whose links can be arbitrarily slow and lossy but faifocess to be its current leader). Initially, differentgesses

— there is a communication-efficient algorithm f@rsuch may have different leaders, b@ guarantees that there is
a time after which all processes have game non-faulty

This paper was originally invited to the special issue oftilbsited leader.
Computing based on selected papers presented at the 22nAEM Failure detectoK? is important for both theoretical and
posium on Principles of Distributed Computing (PODC 2008ap- . s -
pears separately due to publication delays. _practlcal reasons: it is the weak_est failure detector for-so _
) _ _ ~ing consensus and consensus-like problems such as atomic
Eeseamﬂ é“ppoflte? o part by the National Science and &adihy proadcast [8], and it is at the core of several consensus algo
esearch -ounci of “-anacda. rithms that are used in practice [7,21, 25]. It is also used in
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Ouir first result is an algorithm that implemem2sin sys-
temS. Previously known implementations @f in partially
synchronous systems [2, 25, 28, 34] require stronger iikliab

» = link that is timely ity or synchrony assumptions than thoseSotn fact, these

» = link that drops all messages implementations assume systems that are strong enough to
support the implementation of tleventually perfect failure
detector> 2.1 In contrast, it is easy to see t@is too weak
for implementing® £2.

Fig. 1 Processep andq cannot communicate but must agree onthe gy algorithm that implement@ in systemS, however,
leader amongy , s, andss. has a serious drawbachtl the processes periodically send
messages forever. This communication overhead is undesir-
) o able, and a natural question is whether it can be avoided.
Thus, we consider a system that is slightly stronger thgfyitively, after a process becomes the common le&dter,
S”, namely a systen$ with the following additional as- st periodically send messages forever (because if heras
sumption: there is at leasine process that is timely andgs processes must be able to notice this failure and choose
whoseoutputlinks are eventually timely. Roughly speakingg new leader); but thereafter no other process needs to be
this means that the process has a minimum execution spgg@nitored. Thus, after processes agree on a common leader,
and there is a bound and a time after which every messag@o process other than the leader should have to send mes-
sent from that process is delivered withntime. We call  gages. This motivates the following definition and leads us
such a process agventually timely sourceand we denote g 3 related question. An algorithm fa is communication-
by Sa systent~ with at least one eventually timely sourCegfficientif there is a time after which only one process sends

Note that in systen processes doot know the identity of negsages. Is there a communication-efficient algorithm for
the eventually timely source(s), the time after which the oug i, systems?

put links of the eventually timely source(s) become timely, _ _ ) ) _
or the corresponding bounds on message delivery time. To answer this question we investigate the communica-

Sis a very weak type of partially synchronous system ilij]on complexity of algorithms fox2 in systemsS, and we

terms of the timeliness of processes and the timeliness &IfdVe t\g]o ';ypestof Iov(;/er bounds: ?ne on thegumber (:;]pro—
reliability of links. In S, only the linksfrom the eventually CEsses that must Send messages loreéver, and one on the num-

timely source(s) are reliabie; all other links, includimgse ber of links that must carry messages forever. Specifically,

to the eventually timely source(s), can drop messages affjfg Show that for any algorithm fa@ in systems, (@) in ev-
trarily. Thus, processes cannot use eventually timelycgsur €Y 'un all correct processes, except possibly o%e, mueit sen
as “forwarding nodes” to communicate reliably with eacf! essages forever; and (b) in some run at I¢ast-1)/4

other. Moreover, irg, the timeliness assumptions apply onl nks must carry messages forever, wheie the number of

to the unknown eventually timely source(s) and their outpt {ozzteslsestls Tlhese lower bounds T}Old e(;/en forl?lgorlthms
links. All other processes and links can be arbitrarily slow at tolerate only one process crash (and even if we assume

. . . that all the processes i@ are synchronous). We conclude
Can one implemern® in systenmS? Note thatQ requires P y )

that there is no communication-efficient algorithm forin
_that processes eventual@gre_e on a common leader, andgat tolerates one process crash.
it is not obvious how to achieve such an agreement when
some processes cannot even communicate, as it may happeiVe next consider how to strengthen syst&mso that
in system S. For example, consider a sys®mith 5 pro- communication efficiency can be achieved. Specifically,
cesses, denotesd, s, 53, p andg, that behaves as followssince our complexity lower bounds are based on the lack
(see Figure 1): (a) all the processes are correct and timéllyreliable communication i$, we make the following ad-
(b) all the output links ofp andq are lossy and drop everyditional assumption: there is at leaste unknown correct
message thap andqg send (hencg andq cannot commu- process such that the links to and from that process$aare
nicate at all), (c) all the output links ab are timely, i.e., A fair link may lose messages, but it satisfies the following
they are reliable and deliver all the messages sest bya property: messages can be partitioned into types, and  mes
timely way (sos; is a an eventually timely source), (d) all thesages of some type are sent infinitely often, then messages
output links ofs; are timely, except for the link frors; toq  of that type are also received infinitely often [1]. A correct
which loses all messages, and (e) all the output linkg afe  process whose input and output links are fair is callégira
timely, except for the link fronss to p which loses all mes- hub. Note that a fair hub need not be a timely process: it can
sages. Note that for procepsthe natural leader candidates
are the two processes from which it gets timely messages,

namelys; ands;. Symmetrically, forq the natural leader —; o N o . fes: @ that
; ; ; _ nformally, ensures two properties: (a) any process tha
candidates arg, andss. Any implementation of2 must en crashes is eventually suspected by every correct procedgbathere

sure thatp andq eventually agree on the same leader —ig time after which correct processes are never suspected.
non-trivial task here sincp andg cannot communicate with 2 Note that processes may never know whether this has already o

each other (or with any other process). curred.
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| System| Properties |

S Linkscan be arbitrarily slow and lossy
Processesan be arbitrarily slow and can crash, but they have a maxieweuoution speed
S S~ with at least one eventually timely source
(i.e., a timely correct process whosetputlinks are eventually timely)
St S~ with at least one eventually timely souraed at least one fair hub
(i.e., a correct process whosgut and outputinks are fair)
St S~ with at least one eventually timely souraed such that all the links are fair

Fig. 2 Systems considered in this paper (in increasing order efgth).

System | Q algorithm | Communication-efficient cess need to be eventually reliable and timely (all other
Q algorithm links can be arbitrarily slow and lossy). Previous algo-
S No No rithms for Q required stronger reliability or synchrony
S Yes No assumptions.
SESE Yes Yes 2. We show that algorithms fd2 in this weak system are

inherently expensive: all correct processes (except pos-
Fig. 3 Existence of algorithms and communication-efficient algo- Slbly one) must 39”0' messages forever; moreover, a qua-
rithms for Q in different systems. dratic number of links must carry messages forever. This
holds even for algorithms faR that tolerate at most one
process crash.
be arbitrarily slow. We denote §" a systenBSwith at least 3. We then show that with a small additional assumption —
one fair hub (whose identity is not know). the existence of some unknown correct process whose
St is a weak type of partially synchronous system be- links can be arbitrarily slow and lossy but fair — there
cause it does not ensure timely communication between ev- are efficient algorithms fof2 such that eventually only
ery pair of processes. In fact, 8 only messages sefrom one process (the elected leader) sends messages.
the eventually timely source(s) are guaranteed to be even- . ) .
tually timely. All other messages, including all those sent It is worth noting that the results of this paper partially
to the eventually timely sources, can be arbitrarily delayé'SWer some guestions questions posed by Keidar and Rajs-
(thus, processes cannot use eventually timely sources am in their 2002 PODC tutorial [24] (this is explained in
termediate nodes to communicate with each other in a timei§ction 7). _ o
way). This is in contrast to the partially synchronous sys- AS a final remark, two of the algorithms presented in this

tems defined in [9, 17] in which every pair of processes RSPer (naTer, the algorithm f&given in Section 4 and the
connected by a link that is eventually timelyioth direc- One forS"* described in Section 6.1) were implemented and

tions. evaluated in a dynamically-changing system, where applica
Our next result is @ommunication-efficieralgorithm tion processes may join, leave, crash or recover, and commu-
for Q in systemS*. We derive this algorithm in two stagesication links may lose messages or co_mpletely disconnect
we first give a simpler algorithm that works in a system déor extended periods of time [36]. Experimental results pre
notedS*+ that is stronger thas*, and then modify it so sented in [36] indicate that these algorithms work well in
that it works inS'. SystemS' is a systenSwhereall the Practice: they are quite robust and inexpensive to run even i
links are fair. Figures 2 and 3 summarize our results on tH¥namic systems with high processor and link failure rates.
existence and communication efficiency of algorithms@or ~ The rest of the paper is organized as follows. We first
in systemsS™, S, St, andS*+. describe related work (Section 2). We next give an infor-
In summary, we investigate the feasibility and cost dpal model of systemS~, S S", andS** (Section 3). We
implementations of2 — a fundamental failure detector athen describe an algorithm f@2 in S(Section 4), and show
the core of many algorithms — in systems with weak relidbat algorithms forQ in S cannot be communication effi-

bility and synchrony assumptions. Our contributions age ti§ient (Section 5). We next give a communication-efficient
following: algorithm forQ in a systen5"* (Section 6.1). Finally, we

modify this algorithm so that it works in a syste®i (Sec-

1. We give the first algorithm that implemerisin a weak tion 6.2). A brief discussion concludes the paper (Sectjon 7
partially synchronous system where only one unknown
correct process needs to be timely (all other processes
can be arbitrarily slow) and only the links from that Pron Related work

3 S0 St is a systen5~ with at least one eventually timely source
andat least one Tair hub, whose identities are not known. Natette  Related work concerns these of Q to solve agreement

eventually timely source and the fair hub could be the samegss.  problems and th@mplementation ofQ2 in various types of
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partially synchronous systems. Our paper is also relatedworth noting that the algorithm that impleme®@sn system

the seminal work in [15, 17] that identifies (weak) partigb given here is different from the one given in [3]: the new
synchrony assumptions under which one can solve consalgorithm reduces the number of messages by a factar of
sus. In [15,17], however, partial synchrony assumptioss ar  Since [3] was published, several papers have proposed
uniform (i.e., they apply to all processes and/or all lirds§l  other algorithms for2 that work in various types of weak

message-efficiency is not a concern. systems [4, 19, 22, 23, 30, 33]. We now briefly describe these
As we mentioned earlieQ is necessary to solve con-resylts.

sensus and atomic broadcast [8,9, 13, 18] and it is used in |, [4], all links are fair and the algorithm fa® works

sev?ral CONSensus alg?ri;]hms [Gl'<16' $1| 25, 36' 29, 30]!132]\'Nith the following synchrony assumption: there is some cor-
is also a component of the weakest failure detector for tigy nrocesp with f output links that are eventually timely,

non—blo_cking_atomic Com’_““ problem [_14]' o wheref is a bound on the number of faulty processes (such
A simple implementation of2 consists of implement- fiprocess is called a@ventual f-source
y

ing © & first and outputting the smallest process current In [30], all links are reliable and th@ implementation

not suspected by 7 [25, 34]. However, this approach haijses guery-response mechanism with the following synchro-

serious drawbacks. In particular, it requires a systemitha oo . .
ny assumption: there exist a correct procesg and a time

strong enough to implemert#? (a failure detector that is after which, if p broadcasts a query thanreceives replies
strictly stronger tha), and it requiresill processes to Sendfrom at leastf other processes withid time. Note that the

messages forever (just to implement?). rocesses that reply fin a timely fashion can vary over
Several papers have focused on reducing the comngfitrjﬁe ply o y y

nication overhead of failure detector implementation3] [2 ' ) ) ] ]
describes algorithms for several failure detectors, iticig In [22], alllinks are fair and th€ implementation uses a
©.7 4 and© 2, such that in the worst-case only finks s_end-to—all primitive with the following synchrony assump
carry messages forever. These algorithms, however, assi®@ there exisd, a correct processand a time after which,
very strong system properties, namely, that no messagdf iB Sends a message to all then at leastcipients receive
ever lost, all links are eventually timely, and all corremsp the message withit time. Note that thef recipients may
cesses are timely. [28] gives an algorithm forsuch that change from message to messagg.of
only n— 1 links carry messages forever, but it also assumes In [33], all links are reliable and th@ implementation is
a strong system where no messages are lost, all links based on the query-response mechanism of [31]. The imple-
eventually timely, and all correct processes are timely.  mentation works under the conditions in [3d]the system
[2] gives another algorithm fof such that onlyn—1 has an eventudi-source.
links carry messages forever. This algorithm works in a sys- In [19], all links are reliable and all the correct pro-
tem where all correct processes are timely, but only theslinkesses regularly broadcast anive (r) message, where
to and from some (unknown) correct process need to iean increasing integer (a “round number”). The synchrony
eventually timely, all other links can be arbitrarily slowca assumption is defined in terms of theIVE (r) messages:
lossy. This system is stronger than the sys&neonsidered there exist &, a correct procesp, and a suitable subsgt
in this paper: indeed it is strong enough to allow the implef integers such that, for eache R, there is a se§(r) of f
mentation of> #2 (which cannot be implemented 8). processes such thptZ S(r) and for each procesge S(r),
[31] gives an implementation d® that works under an either (1)q has crashed, or (2) theLIVE (r) message sent
assumption on the ordering of message replies More psr p is received byg within & time, or (3) theALIVE (r)
cisely, the implementation uses a query-response mechmssage sent by is received byg among the firsh — f
nism, with which a process broadcasts a query message ADOVE (r) messages received ly

then waits for responses. Links are reliable and the imple- Note that the algorithms faR described in [2,4, 19, 22,
mentation works provided that the query-response mech&- 30 31,33] assume that every pair of correct processes ca
nism satisfies the following property: there exist a corregbmmunicate with each other either directly via a reliable o
process, a setSof f +1 processes (wherkis a bound on far jink, or indirectly via a path of reliable or fair linkhe
the number of faulty processes), and a time after which,dhy algorithms that work even if some correct processes
a procesg) € S broadcasts a query, thepreceives a reply cannot communicate with each other (i.e., even if there is no
from p among the firsh — f replies thag receives. path of reliable or fair links between them) are an algorithm
The present paper is a revised version of an extended gRen in [3], one described in this paper (namely, the algo-

stract that appeared in [3]. To strengthen the algorithetc Kithm for systemS), and the algorithm presented in [23] —
sults, the partially synchronous models considered here gfpaper that we now briefly describe.

slightly weaker than the ones described in [3]. Specifically
in [3], all the correct processes are assumed to be timely;d'Fb
this paper, only one process is required to be timely. Itde al

In [23], processes may not know the identity of other

cesses and processes communicate via a send-to-all

primitive. Links can lose or delay messages, and the algo-
4 Informally, ©. ensures two properties: (a) any process th&thm for 'Q works with the following synchrony assump-

crashes is eventua”y Suspected by every correct promibathere tion: there IS a correct pI’OCGSS that can I’eaCh a.” Otheecbl’l’

is a time after which some correct process is never suspected process through paths of eventually timely links.




On implementing Omega in systems with weak reliability ayrchrony assumptions 5

As a final remark, note that one can impleméhin a be intermittently or arbitrarily slow, or it may crash. Also
given system by first implementing. in that system, and note thatM; andM, can vary per run and are not known to
then transforming®.” to Q using the algorithm in [11]. processes.

This approach, however, cannot be used to implenignt  Links. Processes can send messages over a set of di-
in systemS: this is because the transformation algorithmected links. The network is fully connected, that is, foy an
in [11] requires all processes to reliably communicate witlvo processep # q, there is a directed link frorp to g. The
each other (which may not be possibleSn Furthermore, link from p to g, denotedp — q, is anoutput linkof p and
this approach does not seem to help deriving a communiea-input link of qg.

tion-efficient algorithm forQ in systemS": to use it, one A messagen carries aypeT in addition to itsdataD:
must first derive a communication-efficient algorithm fom= (T,D) € {0,1}* x {0,1}*. For each input linkg — p of
¢~ in ST, and it is not clear that this algorithm would beprocessp and each type Tp has a message buffer, denoted
significantly simpler than our algorithm for implementifyy bufferp[q, T], that can hold &inglemessage of type T. Ini-
in S*. tially, buffer,[q, T] is empty, denoteduffery[q, T] = L. If g
sends a messageof type T top, and the linkg — p does
not losem, then eventuallyouffer,[q, T] is set tom. When

3 Informal model this happens, we say thaessage m is delivered to p from g
If buffer,[g,T] was already set to some previous message
We consider distributed systems with> 2 processe$l = from g, t?lat message is overwritten by

{0,...,n—1} that can communicate with each other by When a proces$ takes a step, it may choose a pro-
sending messages through a setdogctedlinks. In our cessqand atype T to read the contentshufffer,[q, T]. If
model, time values are taken from the Bt of positive real buffer,[q, T] has a message # L then we say thap re-
numbers; time intervalty,to] is the set of timegt € R™ ©  cejves message m fromandbuffer,[q, T] is automatically
th <t <t} o o ~ resettol. Otherwisep does not receive any message at that
ProcessesProcesses are (finite or infinite) deterministigtep. In either case may change its state to reflect the out-
automata that execute by taking steps. In each step, a Broggsne.
p can do one of the following three things (accordingi® Note that even if a message of type T is delivered
state transition fUnCUOn): (1D) trIeS to receive a messaqu p from a, there is no guarantee thplvw” eventua”y re-
from another process (as explained below) and then changggem. First, it is possible thap never chooses to check
state, or (2)p sends a message to another process and thgiffer,[q, T]. Second, it is also possible thatffer,[q, T] is
changes state, or (3)just changes stafeA step need not gverwritten by a subsequent message fipof type T be-

be instantaneous, but we assume that each step takes effggtp checksbuffer,[q, T]. Finally, pmay crash before read-
at some instantaneous moment during the execution of ms the content obuffer,[q, T]
pLh -

step. i . . To define link properties, it is convenient to assume that
A procesgpis correctif it executes infinitely many steps. megsages are unique (this can be achieved by associating a
If p executes only a finite number of steps, we say matsequence number and sender id to each message).

crashes _ _Every linkp — gsatisfies the following property in every
We assume that processes have a maximum speed, i &,

there is an upper bound on the rate of executiceveirypro- ) ) )
cess. More precisely, in every run every procpsmtisfies — [Integrity]: A messagenis delivered tayfrom p at most
the following property: once, and only ifp previously sentnto g.

— [Maximum Rate of ExecutionFhere existdl; > 0such Some links may satisfy additional properties which are de-

that for every timet, p executes at most one complet§cribed below. _ _ .
step during time intervalt,t + Mj]. We say that a linkp — q is eventually timely (in a run)

. ifit satisfies the following property (in that run):
There may be a lower bound on the rate of execution of

timely (in a run)if it satisfies the following property (in that ~ thatif p sends a messageto g at a timet’ > t, thenm
run): is delivered tag from p by timet’ + 4.
The maximum message deldyand the timet above can
yary per run and are not known to processes.

A link that is not eventually timely can be arbitrarily
slow and/or it can lose messages. A lossy link may satisfy
Note that a timely process takes an infinite number of steja¢ following fairness property: if a process sends an it#ini

and hence it must be correct. If a process is not timely, it maymber of messages of a type through a link then the link
delivers an infinite number of messages of that tpe.

— [Minimum Rate of Execution]There existd/, > 0 such
that for every timet, p executes at least one complet
step during time interval,t + My].

5 Our lower bounds also hold in a stronger model in which eaoh pr.
cess can receive, change state, and send a message in asingle  © This kind of fairness property of links, which we call “typairt:
step. ness”, is new and is further discussed in [1].
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More precisely, we say that a link— gisfair (inarun) 4 |mplementing Q in systemS
if it satisfies the following property (in that run):

We now describe an algorithm that impleme@sn S. This
— [Type Fairness] For every type T, ifp sends infinitely algorithm, shown in Figure 5, ensures that processes even-
many messages of type T dpthen infinitely many mes- tually agree on a common leader, even though most pairs of
sages of type T are delivereddgdrom p. processes may be unable to communicate with each other
(recall that inS all links can be arbitrarily slow and lossy,
Eventually timely sources and fair hubs.A processp except for theoutputlinks of some timely process whose
is aneventually timely source a run if in that run (1)p identity is unknown).
is timely, and (2) the output links qf are eventually timely.  In all the algorithms described in this paper, processes
Only the output links need to be eventually timely, hence thgelocal timers In particular, each procegsuses a local
word “source”. A proces is afair hubin a run if in that timer denotedSendAliveTimeto periodically send AIVE
run (1) pis correct, and (2) the input and output links@f messages to other processes. Moreover, for each process
are fair. Note that a fair hub and its input and output Iinl@# p, p uses a local timer denoteinerq] to determine
can be arbitrarily slow. whether it has “recently” received anLAVE message from
Systems.We consider four systems, denot®d, S S" processy. Processp implements its local timers as simple
and S™t, which differ on the properties of their processesount-down counters as follows. Procgssan “turn on” a
and links. All these systems have the following properiies: local timerT by setting it to any non-negative intederthat
every run, every process satisfies the Maximum Rate of B%; by executing the statememt« k, wherek > 0 is the
ecution property and every link satisfies the Integrity profitimeout” constant. As long a3 > 0, processp periodi-
erty. SystemS- has no other requirements. In syst&n cally decrement3§ by one, and it does so ats own pace.
in every run, there is at least one eventually timely sourcgo, unlesg first resetdT, the value ofT eventually reaches
In systemS", in every run, there is at least one eventuall§. When this occurs, we say thaner T expires

timely source and at least one fair hub. In syst8ht, in A naive attempt at implementing is as follows. Each
every run, there is at least one eventually timely source apbcess periodically (a) sends A/E messages to the other
all the links are fair. processes, (b) computes the set of currently “alive” pro-

cesses, as the set of processes from which it directly redeiv
an ALIVE message recently, and (c) selects as its leader the
process with the smallest id in this set. But this algorithm
3.1 Failure detectof does not work: in syster8 almost all links may suffer from
arbitrary delays and/or losses, and this gives rise to akver
The formal definition of failure detectd® is given in [8,9]. problems. In particular, (1) different processes may héive d
Informally, Q outputs, at each procegs a single process ferent views of which processes are currently alive, and the
denotedeader,, such that the following property holds:  different views may never converge, (2) a process with a
small id may repeatedly alternate between appearing to be
— There is a correct procegsand a time after which, for alive and crashed, and continue to do so forever. Such prob-
every correct process, leader, = /. lems complicate the task of selecting a common and perma-
nent leader: problem (1) may cause different processes to
Note that, at any given time, processes do not knowgve different leaders (forever), and problem (2) may cause
there is a commonly agreed leader; they only know th@tProcess to repeatedly change its leader forever.
eventually there will be a common leader. To overcome these and other similar difficulties, we use
the following ideas. First, instead of selecting the leaater
cording to the smallest process id, processes keep track of
(roughly) how many times each process was previously sus-
3.2 Communication efficiency pected of having crashed, and they select as their leader the
process with the fewest number of suspicions so far (among

We are interested in failure detector algorithms that mirf-Set of alive processes). Second, the set of alive processes
mize the usage of communication links. Note that in any reiom which each process selects its leader is constructed in
sonable implementation of a failure detector, some procd¥¥ stages. In the first stage, every procpgseriodically:
needs to send messages forever. However, not every proéés§ends an AIVE message to the other processes, (2) re-
needs to do that. We say that an implementation of failu@mputes the set processes from which it directly received
detectorQ is communication-efficierit there is a time after @n ALIVE message recently (this set is denoaetive, and
which only one process sends messages. (3) selectsits “local” leader, denotéatalLeadefp], among
the processes in iectiveset. In the second stage, every pro-

7 Henceforth, when we say that there is a time after which sont&>>P periodically: (1) sends its curretcalLeadefp] to
propertyC holds, we mean that there is a tirheuch that for every the other processes, (2) recompUt.es_ thdcmeLeadersof
timet’ > t, propertyC holds at time’. the local leaders of the processes ireitsiveset, and (3) se-
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lects its (global) leader among the processésdalLeaders integerb, each iteration of the repeat forever loop (lines 8—
These two stages are actually done concurrently. We now 29) takes at modi automaton steps (this is because there are
plain the algorithm in more detail. no infinite loops, waiting statements, or similar constsuot

The algorithm, shown in Figure 5, is structured as lines 9-29), and (2) each iteration of the repeat forevep loo
repeat forever loop. In this loop,p first executes theip- takes at least two complete automaton steps.
dateLeademprocedure to recompute its local leader and its We now give an intuitive outline of the algorithm’s proof
(global) leader as described above. More precigeipain- of correctness. Recall that in each run there is at least one
tains a vector of “accusation” counters, denotmdinter eventually timely source. It is easy to see that there is
wherecountefq] is p's rough estimate of how many timesa time after which processes (a) stop timing outspifb)

g's was previously suspected of having crashed. Inupre considers to be active, and (c) stop sendingcAUSATION
dateLeademprocedure p first selects its local leader as thanessages te. Thus, eventuallys stops increasing its own
process with the smalles{countefr],r) tuple, in lexico- counter. Consider the all correct processes with a counter
graphical order, among the processes iadsveset. Therp that stops increasing, and léte the correct process with
forms the setocalLeadersconsisting of all the local leadersthe smallest final counter. This is the process that is even-
of the processes in itsctiveset. Finally,p selects its (global) tually elected as leader. To see this, first note that eventu-
leader as the procegsvith the smallestcountef/],¢) tuple ally sstops timing out orf (otherwises would keep sending
among the processes in ltxalLeadersset. ACCUSATION messages th causing/’s counter to increase

After updating its local and global leadens,checks without bounds). Therefore, there is a time after wticbn-
whether its SendAliveTimerhas expired, i.e., whethersiders! to be active. Sincéis eventually the correct process
SendAliveTimet= 0. If it has expired, then (ap sends an with the smallest counter, there is a time after wrsgicks
ALIVE message to every process p (each such messagel as its local leader. Sincecan communicate with all other
containsp's current local leader, the counter of this loca#orrect processes, eventually all correct processes featn
leader according tp, andp’s own counter), and (b resets £ is S's Iopal leader. Thereaftdris a candidate for (global)
its SendAlive Timeto some constant integgr> 1. Constant leadership at every correct process.

n is a “message efficiency” parameter that controls the rate Now consider an arbitrary correct procgsand any pro-
at which p sends its AIVE messagesp sends them once cess] that may compete withfor global leadership gt. We
everyn iterations of its repeat forever loop. claim thatq_ eventually Iosgs this comp_etition for one o_f two

Then, for each process processp checks whether an '€asons: either there is a time after whintioes not consider
ALIVE message was delivered frami.e., whether the cor- 10 be active (in this casgremovesy from the competition
responding buffer frong is non-empty. If sop receives this €ven ifqhas a lower counter thafi, or p eventually realizes
message, it addg to its active set, and it stores the localthatg's counter is larger thafis counter. So there is a time
leader ofq in the variablelocalLeadefq]. Processp also after which? becomes the leader pt o
updates the counters gfand of the local leader of. Fi- We now give the detailed proof that the algorithm in Fig-
nally, p resetdimer{g] by setting it totimeoufq] (intuitively, Ure > implements2 in systenS. Henceforth, we consider an
p expects to receive the nextAVE message frong within arbitrary run of this algorithm in syste® andsis an even-
timeoufq] iterations of its repeat forever loop). tually timely source in this run. _

If timerg) expires (beforep receives another AvE In the following, the local varlablagr of a procesg is
message from), thenp removegj from itsactiveset, and it dertloged byarp. The value ofvary at timet is denoted by
sends an ACUSATION message tq to tell q that it suspects Varp.

g of having crashed. Procegsalso incrementsimeoufq],
and it restartgimer{q] with this larger timeout. Intuitively,
p increases the timeout apbecause it does not know th
speed of the eventually timely sources and the delay of thé®) If g € active, holds infinitely oftef then p receives
output links. ALIVE messages from q infinitely often.

Then p checks whether an @&cusaTioN message was () If g € localLeaderg holds infinitely often then
delivered. If so,p receives it, ancp increases its own accu- P receivesALIVE messages from ¢ infinitely often, or
sation countecountefp]. Finally, at the end of the repeat P receivegALIVE, g, —, —) messages infinitely often.
forever loop,p Qecrt_aments _by one every timer that it US€Br00f Consider two processgsandq such thatp is correct
namely,SendAliveTimeandtimerq] for everyq # p. andq # p

Note that this algorithm uses only two message types: '
ALIVE and ACCUSATION. (a) Assume that < activg, holds infinitely often. Since

Figure 5 describes the algorithm by giving the pseudo- 47 p, preceives atleast onelAve fromqthat causep
code of an (arbitrary) procegs and Figure 4 describes the—
local variables ofp. Recall that in our modelp is a deter- . .

RS L just after this step.
ministic automaton that takes steps, but it is easy to wa@sl ™ A conditionC holds infinitely often if for every time, there is a

the pseudo-code of given here into such an automatonimet’ > t such thatC holds at timet’. Note that € holds infinitely
Without loss of generality, we can assume that: (1) for somgen” is the opposite of “there is a time after whictdoes not hold”.

Lemma 1l For every correct process p and every process
9 Z# p, the following holds:

If a step of p takes effect at timeg, thenvar‘p is the value ofvarp
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| Variable | Intuitive description |
active set of processes thatconsiders to be currently alive
counterq] p’'s estimate ofy's accusation counter

(the number of times processes previously timed ouf)on
SendAliveTimer count-down timer used to send anIXE message eveny iterations of the repeat forever logp
timer{q] count-down timer used to determine whethés currently alive
(timer{q] is initialized totimeoufq] and it is decremented by one in each iteration
of the repeat forever loop; iffwhdimer|q] reaches 0, it is reset tamneoufq))
timeouiq] length of p’s timeout onq
localLeadefq] | p's estimate ofy’s local leader
(g chooses its local leader to be the processth the smallest tuplécountefr], r)
among all the processes(fs activeset)
localLeaders | p’s estimate of the set of local leaders of all the process@siactiveset
leader the leader op
(p chooses its leader to be the procésgth the smallest tuplécountef?], ¢)
among all the processes|irs localLeadersset)

Fig. 4 Local variables of processin the algorithm of Figure 5.

to firstinsertq in active,. If there is a time after whiclp  Proof
does not receive AVE from g, then eventuallyimer,|q] Part 1: (a) = (c). Consider two processgs# ¢, and
expires (i.e.timery[q] reaches 0)p removesq from suppose thap receives AIVE messages from infinitely
active,, and p never inserts) back into this set again often. Theng sends such messages infinitely often, and so
— a contradiction that shows part (a). is correct. Consider any timteEventuallyp receives a mes-
(b) Assume that € localLeaderg holds infinitely often. sagem= (ALIVE,—,—,qcntr) that is sent by after timet.
Sincep resetdocallLeaderg to {localLeadep[u] : uc Sincegsendsnafter timet andcounteg|q] is monotonically
activg, } infinitely often (in theupdateLeadeprocedure nondecreasingjcntr > counte[a[q}. So, whenp receivean
thatp executes in line 9), there must be at least one pripom q, psetscounteb[q] to a valuev > qcntr > Counteb [q]

cessr such thatocallLeadep|r] = q andr € active, in- Thereaftercounteg|q] > counte%[q} (becausecountep[q]

finitely often. There are two possible cases: is monotonically nondecreasing).
(1) r = p. In this case/ocalLeadep[p] = q infinitely Part 2: (b) = (c). Consider two processgs# g, and
often. Sincep resetdocallLeadep|p] infinitely often to suppose thap receivegALIVE,q, —,—_) messages infinitely
a process imctive, theng € active, infinitely often. By  often. Then, for some processp receivegALIVE, g, —, —)
part (a) of the lemmap receives AIVE messages from from r infinitely often. If r = g then condition (c) holds by
g infinitely often. part 1 of this proof, and we are done.

Now assume # . Consider any time, and letC =

(2) r # p. Suppose, for contradiction, that there is a

time t after whichp does not receivéALIVE,q,—,—) counte [q]. Note thgtr sends(ALIVE,q,—, —) to p_in—
messages. Sincee active, infinitely often andrp, finitely often. Each time sends such a message in line 11,

by part (a) of the lemmap receives AIVE messages localLeadef[r] = g, and sog € active at that_tlm_e (th_ls is
fromr infinitely often. After timet, none of these mes- because resetdocall.eader[r] to a process Iactive just
sages aréALIVE,(Q,—,—) message. So there is a tim .e.forer sends(A_UVE,q,—, —))- Thus,g € active holds in-
after which localLeadep[r] # g — a contradiction. initely often. Sincer # g, then by Lemma 1 part (aj, re-

Thus, p receives(ALIVE. q, —, —) messages infinitely ceives ALIVE messages from mfmlte_ly often. By part 1 of
often. 0O this proof,qis correct and there is a time after which process

r hascountef[g) > C. So p eventually receives a message
m= (ALIVE,q,qcntr,—) from r such thagcntr> C. When
p receivesm, p setscounteg[q] to a valuev > gcntr > C.
Thereaftercountep(q] > counte%[q} (becausecountep|q]
is monotonically nondecreasing). a

Observation 2 For all processes p and ¢, counigq] is
monotonically nondecreasing with time.

Lemma 3 For every two processesq, if

. e Lemma 4 For every correct process p and every process d,
(&) preceiveALIVE messages from q infinitely often, or y P P yp q

b receivesALIVE,Q, —, —) messages infinitely often
(b) p g /% =) g 4 (@) g€ activg, holds infinitely often, or

then (c) q is correct, and for every time t, there is a timeraft€b) q < localLeaderg holds infinitely often

which countegq] > countef[q]. then (c) g is correct, and for every time t, there is a timerafte
which counteg|q] > counte}[q].
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CODE FOR EACH PROCES®$:

procedure updateLeadd))

+ localLeadefp] < r such thatcountefr],r) = min{(countefq],q) : q € active};
. localLeaders— {localLeadefq] : g € active}

s leader— ¢ such thatcountef/], ¢) = min{(countefq],q) : q € localLeaders

main code
{ Initialization }

for eachq € 1 do countefq] < O ; localLeadefq] < ¢

for eachq e 1\ {p} dotimeouiq] < n + 1;timerq] < timeoufq]

active— {p}

SendAliveTimes 0 { p setsSendAliveTime 0 to start sendind\LIVE messages

~ o o »

s repeat forever
9 updateLeadd)

10 if SendAliveTimes 0 then

1 send(ALIVE,localLeadefp], counteflocalLeadefp]], countefp]) to every process except
12 SendAliveTimes n

13 foreachqe 1\ {p} do

14 if receive(ALIVE,r,rcntr,gcntr) from g then

15 active— activeU {q}

16 localLeadefq] < r

17 countefq] < max{countefq],gcntr}

18 countefr] — max{countefr],rcntr}

19 timer|g] < timeoufq]

20 if timer{g) = 0then

2 send ACCUSATIONtOq

2 active— active— {q}

23 timeoufq] < timeouiq] + 1

2 timer{q] < timeouiq]

2 if receive ACCUSATION from ¢ then

2 countefp| < countefp] + 1

27 if SendAliveTimer 0 then SendAliveTimer— SendAliveTimer 1
2 foreachqe M\ {p} do

2 if timer{g] > O then timer{q] < timer{q] — 1

Fig. 5 Implementation of2 for systemS.

Proof If p= g, condition (c) holds becaugeis correct and forever loop ofs takes at mosb automaton steps, and (8)
counteg[p] is monotonically nondecreasing. satisfies the Minimum Rate of Execution property (because
Now assume thap # q. If (a) or (b) holds, then by sis atimely process). a
Lemma 1,p receives AIVE messages fromg infinitely of-
ten, orpreceivegALIVE,q, —, —) messages infinitely often.

By Lemma 3, condition (c) holds. O Recall thatn > 1 is the “timeout” value ofSendAlive-
Recall thats is an eventually timely source in the runTimer(see line 12).

under consideration. Definition 7 LetA’ = (n +1)a.

Definition 6 Leta > 0 be a constant that satisfies Lemma 5.

Lemma5 There is a constard > 0 such that, for all k>0 )
and every time t, process s executes at least k comple@nma 8 For every process g s, if s sends arALIVE

iterations of its repeat forever loop during time intervaMessage to p at some time t, then s sends andthere
(t,t+ka]. message to p during time interv@lt + A'].

Proof The lemma follows directly from two facts: (1) thereProof Supposes sends an AIVE message t@ # sat some
is an integeb such that each complete iteration of the repetimet (this occurs in line 11). Then, whesexecutes line 12
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(in the same iteration of its repeat forever logmetsSend- Definition 14 Let € be a constant that satisfies Lemma 13.
AliveTimerto n > 1. Sinces decrementSendAliveTimely _

one in each iteration of its repeat forever loop (in line 27), Note that, by Lemma 13p takes at least\’ + A time

s setsSendAliveTimeto 0 by the time it completeg such t0 execute[(A’+A)/g] complete iterations of the repeat
iterations. By Lemma 5, this takes at mast units of time. forever loop.

So by timet + na, ssetsSendAliveTimeto 0. Thus, by the L ,

time s completes one more iteration of the repeat forev@efinition 15 Letd = [(A"+A4)/¢] + 2.

loop, i.e., by timet + na +a =t+A’, s executes line 10
with SendAliveTimes 0 and sends anothenA/E message
top. 0

Lemma 16 For every correct process $ s, there is a time
after which p receives aALIVE message from s at least
once every( consecutive iterations of p's repeat forever

Lemma 9 For every process g s, there is a time’tsuch 100P:

that for every t>t/, s sends a\LIVE message to p during

time intervai(t, t + A’). Proof Consider a correct proceps# s. By Lemma 12, there

is a timet’ such that for every > t’, there is an AIVE mes-

Proof Let p £ s. When's executes its initialization code S29€ delivered tpfrom sduring time intervalt,t+A4’+A].
(lines 4-7),s sets itsSendAliveTimeto 0. Thus, in its first NS, there are infinitely manylAvE messages that are

execution of the repeat forever loop (lines 8-29¢xecutes delivered top from s. Sincep is correct, it executes its re-

line 10 with SendAliveTimes 0 and sends an AVE mes- Peat forever loop infinitely often. In each iteration of this
sage top at some time;. By Lemma 8,s sends another loop, p tries to receive an AVE message from every pro-

ALIVE message tp at time(ty, t; + A’]. The lemma follows €317 P (includings), sopreceives AIVE messages from

by repeated applications of Lemma 8. o Sinfinitely often.
Supposep receives an AIVE message frons at some

Lemma 10 There is a constanf and a time  such that, timet >t’. From Lemma 12, another IAVE message is
for all processes p, if s sends a message m to p at some tfigvered froms during the periodt,t + A’ + A]. Thus, by
t > ta, then mis delivered to p from s by time A. Lemma 13, this AIVE message is delivered fobeforep
completeg (A’ +A) /€] + 1 consecutive iterations of its re-
Proof This follows immediately from the fact thatis an peat forever loop. Sp receives this AIVE message by the
eventually timely source, and therefore all its output $inkime it completeg (A’ + A)/g] + 2 iterations of the loop.
are eventually timely. O We conclude that there is a time after whiphieceives
o o an ALIVE message frons at least once ever§ = [(A’ +
Definition 11 Let A be a constant that satisfies Lemma 1OA)/£‘| + 2 consecutive iterations of its repeat forever |00p_

. . O
Lemma 12 For every process g s, there is a time’tsuch

that for every t> t', there is anALIVE message delivered toopservation 17 For every correct process p, there is a time
p from s during time intervalt,t + A’ + A]. after which pe active,.

Proof Follows directly from Lemmas 9 and 10. O Proof Whenp executes its initialization code, it sestive,

. to . Thereafterp never removes itself froractivg,, O
Lemma 13 There is a constant¢ > 0 such that, for every {p} P ®

k= 1and every process p, p takes at leastikne to execute Lemma 18 For every correct process p, there is a time after
k complete iterations of its repeat forever loop. which se active,.

Proof The lemma follows from the following facts: (1) eachproof Let p be any correct process. f= sthen, by Obser-
complete iteration op's repeat forever loop takes at leasyation 17, there is a time after whiche active,. Now as-
two complete automaton steps, and pXatisfies the Maxi- syme thap # s. By Lemma 16, there is a tintg after which
mum Rate of Execution property. We now explain this progf receives an AlVE message frons at least once ever§
in more detail. consecutive iterations of its repeat forever loop. Eactetim
Letk > 1 and consider some proceps To execute a p receives such a messageaddss to activg,. We claim
complete iteration of the repeat forever logriakes at least that p removess from active, only a finite number of times,
two complete automaton steps. Thus, to exekutemplete which concludes the proof. Suppose, for contradictiont, tha
iterations of the loopp takes at leastkcomplete steps. By p removess from active, infinitely often (line 22). Thenp
the Maximum Rate of Execution property, there exists a coifcrementsimeout g infinitely often (line 23), and so there
stantM; > 0 such that for every timg p executes at most js a timet, after whichtimeoup[s| > ¢. We now considep's
one complete step during time interg&lt + M;]. Thus, for execution after time = max(ty, tz).
every timet and everk > 1, pexecutes at mosk2-1com-  After time t, each timep receives an AIVE message
plete steps during time intervet,t +-kMy]. Lete = My. We  from s, p resetgimer,|g to timeoup[s| > {. After each iter-
conclude thatp takes at leaskM; = ke time to execut&k ation whereimer,|s| is reset this waytimer,[s| can decrease
complete iterations of the repeat forever loop. O to 0 only if p completes at leas}t consecutive iterations of
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its repeat forever loop without receiving any WE message
from s (in each such iteratiop decreasesmery[s| by one).
But after timet process receives an AIVE message frors

at least once ever§ consecutive iterations of its repeat for-

ever loop. So there is a time after whittimer,[s] # 0. Note
that p removess from active, only if it executes line 20 with
timerp[s| = 0. Thus there is a time after whighdoes not
removes from active, — a contradiction. 0

Lemma 19 counteg[s] is bounded.

Proof Consider any correct procegs# s. Each timep
sends an ACUSATION message t®, p removess from
activey. By Lemma 18, there is a time after whighdoes
not removes from active,. So there is a time after which
p does not send any @CUSATION messages tg. More-
over, s never sends BCUSATION messages to itself. Thus
there is a time after which no process (whether correct
faulty) sends ACUSATION messages ta Sincesincreases
counteg[s| only when it receives such messagasnteg[s|

is bounded.

Definition 20 For every proces®, let ¢, be the largest
value of countep(p| in the run that we considecg = o

if countep[p| is unbounded). Lef be the process such thatthe

(¢, £) = min{(cp, p) : pis a correct procesgs

By definition,/ is a correct process. Furthermore, by Lem
19, counteg[g is bounded, i.e.¢s < «. Thus,c; < o, i.e.,
countey[/] is bounded.

Lemma 21 For every correct process p,

(a) if there is a time after whicli € active, then there is a
time after which locallLeadgfp] = ¢, and

(b) ifthere is atime after whiche localLeaderg then there
is a time after which leadgr= /.

Proof

(a) Letp be any correct process, and suppose that ther
a time after which? € active,. We claim that for ev-
ery q # ¢, (i) there is a time after whicly ¢ active,,
or (ii) there is a time after whici{countep[(],/) <
(counteg[q],q). From the wayp setslocalLeadep|p]
in theupdateLeadeprocedure, this claim implies ther
is a time after whichiocalLeadep[p| = ¢.

To show the claim, consider any procegg ¢, and sup-
pose that condition (i) does not hold, i.e., suppose t
g € activg, holds infinitely often. We now show that
condition (ii) is satisfied. By Lemma 4 part (&@)js cor-
rect, and for every time, there is a time after which
countep|q] > counte};[q]. There are two cases:
(1) counteg[q] is boundedIn this casecq < o, and so
there is a timé whencounte}[q] = cq. So there is
a time after whichcountep|q] > c4. Recall thatq
is correct andy # ¢, and so by the definition o,
we have(c,, £) < (cq,0). Sincecountep (] < ¢, (al-
ways), there is a time after whiglcounteg[¢], /) <
(Ce, ) < (Cq,9) < (countep[q],q).

e

h

(2) counteg[q] is unboundedin this casegountep|q]
is also unbounded. So there is a time after which
counteg[/] < ¢, < countep[q].
Therefore, in both cases there is a time after which
(countep[(], ¢) < (counteg[q],q), i.e., condition (ii)
holds.
(b) (Similar to the proof of part (a).)
Let p be any correct process, and suppose that there
is a time after which? ¢ localLeaderg. We claim
that for everyq # ¢, (i) there is a time after which
q ¢ localLeaders, or (ii) there is a time after which
(countep[/],¢) < (countep|q],q). From the wayp sets
leader, in the updateLeadeprocedure, this claim im-
plies there is a time after whideader, = /.
To show the claim, consider any procegg ¢, and sup-
pose that condition (i) does not hold, i.e., suppose that
q € localLeaderg holds infinitely often. We now show
that condition (ii) is satisfied. By Lemma 4 part (lg),
is correct, and for every timg there is a time after
which countegq] > countef,[q]. The rest of the proof
now proceeds identically to cases (1) and (2) of part (a)
above. ad

or

We now proceed to show that for every correct progess
re is a time after whiche localLeaderg (and hence, by
the above lemma, there is a time after whiehder, = /).

M mma 22 There is a time after whiche active,.

Proof If ¢ = sthen, by Observation 17, there is a time after
which ¢ € active. Now supposé # s. There are three pos-
sible cases: (1) there is a time after which active, (2) ¢

is added to and removed froattive infinitely often, or (3)
there is a time after whicl ¢ active,. We now show that
cases (2) or (3) cannot occur. In case (2), every time-
moves/ from active, s sends an ACUSATION message to

£, and sos sends AACUSATION messages té infinitely of-
ten. In case (3), there is a time after whtioes not receive
ALIVE messages frond. Thus,timers[¢] expires infinitely

%iten ats (this is becauss initially setstimer;[¢] to some

positive value, and each time this timer expiregsets it to
a positive value). Thereforesends ACUSATION messages
to ¢ infinitely often. So, in both cases (2) and (3)sends
ACCUSATION messages té infinitely often. Since the out-
put links ofs are eventually timely, andtries to receive an
ACCUSATION message frons infinitely often (specifically
once in each iteration of its repeat forever loapjeceives
REcusation messages from infinitely often. Thus/ in-
crementscounteg[¢] infinitely often, and sacountey[/] is
not bounded — a contradiction. Thus, only case (1) is pos-
sible. ad

Lemma 23 There is a time after which localLeadés] = ¢.

Proof By Lemma 22, there is a time after whiéke active,.
Therefore, by Lemma 21 part (a), there is a time after which
localLeadeg[s]| = /. O

Lemma 24 For every correct process p, there is a time after
which locallLeadeg(s] = /.
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Proof Consider any correct proceps|f p = sthen the re- from other processes, then there is a time after which the
sult is immediate from Lemma 23 . Now assume thet¢ s. leader of p is p.

In this case, from Lemma 16 receives AIVE messages  To prove the Claim, suppose there is a Rmof <7, a

from s infinitely often. By Lemma 23, there is a tinteaf- correct procesp, and a time after whichp does not receive

ter whichlocalLeadeg[s| = ¢. So after timd, all the ALIVE  any message. Without loss of generality, we can assume that

messages thatsends tq are of the form(ALIVE,¢,—,—). no process crashes R This is because if some proceks
Thus, there is a time after which all theL&WE messages crashes at some tinig(i.e., f stops taking steps after tin@
that p receives froms are of the form(ALIVE,¢,—,—). So in R, we can modifyR to get a similar run wheré never
there is a time after whiclocalLeadep[s] = /. O crashes, but all its output links crash permanently at time

) _ (i.e., they lose all the messages thatends after tim&); this
Corollary 25 For every correct process p, there is a timgnogified run is indistinguishable from to all processes,
after which/ € localLeaders. except for proces$ who is now correct.

Proof From Lemmas 18 and 24, there is a time after whichrofégce.F;'ioe:rreu; an?”rﬁ?ﬁgrtgﬁs‘ g‘gg'r?;ﬂenr]oeé?ggg
s € active, andlocalLeadep[s) = ¢. Sincep repeatedly sets P P! Inrd : P 8

localLeaders to {localLeadep[q] : q € active,}, there is a atime aft_er which the leader qf is_q. We now show that
time after which¥ € localLeaders. G= p (which proves the above Claim).
Suppose, for contradiction, thgt# p. Let R be a run

Lemma 26 For every correct process p, there is a time afte@f </ that is identical taR up to timet, and such that after
which leadep = ¢. timet: (a) procesg crashes, and (b) all thaput links of
p crash permanently, while theutput links of p become
Proof Immediate from Lemma 21 part (b) and Corollary 2%imely and stop losing messaggsi¢ the eventually timely
O source in rurR). Since procesp receives exactly the same
messages at the same timeRiandR/, p cannot distinguish

From Lemma 26 and the fact thats a correct process, Wepenyeerk andR, and so it behaves exactly the same way in

have R andR.10
Theorem 27 The a|gorithm in Figure 5 imp]emen@ in ThUS, in runR of o7 there is a time after which the leader
system S. of pis g, even thoughy crashes — a contradiction that con-

cludes the proof of the Claim.

We now prove part (1) of the theorehet R be an arbi-
5 Impossibility of communication-efficientQ in trary run of algorithme/, andcorrectR) be the number of
systemS correct processes R. To prove Part (1) of the theorem, we
must show that at leasbrrect(R) — 1 correct processes send
We now consider the communication complexity of implemessages forever (*). To do so, consider the following two
mentations of2 in systemS. Specifically we give two types cases:
of lower bounds: one is on thimber of processébkat send (a) correct(R) < 1. In this case, (*) trivially holds.
messages forever, and the other is omtinaber of linkshat (b) correctR) > 2. Suppose, for contradiction, that (*)
carry messages forever. A corollary of these lower boundsdises not hold, i.e., at mosbrrect(R) — 2 correct processes
that there is no communication-efficient implementation gend messages forever. ThusRithere are at least two dis-
Q in systemS. The lower bounds that we derive here holtinct correct processes that dot send messages forever. In
even if we assume that all processesSiare synchronous other words, irR there are two distinct correct processes
(i.e., all processes have the same, constant executiod)spe@dq and a time such thatp andg do not send any message
andat most one process may crash after timet.

. . . Without loss of generality, we can assume thaRir(a)
Theorem 28 Consider any algorithmy for Q inasystemsS | the output links ofp andq areeventuallytimely (and so

with n> 2 processes such that all processes are synchronqiisp, p andq are eventually timely sources R), and (b) no
and at most one process may crash. process crashes (the argument is as before: we can “replace”

1. Ineveryrun of &7, all correct processes, except possibl§he crash of a process, by the simultaneous and permanent

one, send messages forever. crash of_aII its output Iir_lks). _ _ _
f | 2| link We first show that irR there is a time after which the
2. In somerun of o7, at least| 7 | links carry messages

forever leader ofq is not p. To see this, IeR/. be a run of«/ that is

: identical toR except thatp crashes irR after timet. Note
Proof Henceforth we consider an algorithm that imple- that, except fop, processes cannot distinguish between runs
mentsQ in a systemSwith n > 2 processes such that alR @ndR, and so they behave the same&RandR'. Sincep
processes are synchronous and at most one them may crigdRulty inR’, in R there is a time after which the leader of
We first show the following 10 Note that even if the algorithmz that p executes is non-

CLaim: For any run of</ and any correct process p, if geterministic, we can chose i such thatp behaves the same in
there is a time after which p does not receive any messagjend inR.
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gis notp; thus, inRthere is a time after which the leader othen there is a time after whighdoes not receive any mes-
gis notp. sage inR. So, by the Claim, iR there is a time after which

Now let R’ be a run ofeZ that is identical taR, except the leader ofpis p. Thus, in runR’ of <7 correct processes
that in R’ after timet, (1) all the output links ofp crash p andqg do not reach agreement on a common leader — a
permanently, and (2) all the input links @f crash perma- contradiction.
nently, except for the link frong to p which, as in rurR, is Thus we proved our claim that in riRevery process in
eventually timely (sa is the eventually timely source of runA sends messages forever to every process Bince|A| =
R"). Note that, except fop, processes cannot distinguish berg] and|B| = | ], this implies that at leagt) | - | §| = L%ZJ
tween runsR andR’, and so they behave the sameRiand  |inks carry messages forever in ri 0
R’. Thus, inR’ there is a time after which the leaderapfs
not p (as it was the case in ri). In R, p ceases to receive ~ From Theorem 28 part (1), we immediately get the fol-
messages, and so, by the Claim, there is a time after whiewing result:

H H !

the leader o is p. Thus, in runR" of o/ correct processesCoroIIary 29 There is no communication-efficient algo-
p andq do not reach agreement on a common leader —

A~ . : rithm for Q in a system S with & 3 processes, even if we
contradiction. So (*) holds, and this concludes the proof Assume that all processes are synchronous and at most one
part (1) the theorem.

process may crash.
We now prove part (2) of the theoreRartition the set of
processes dbinto setA with [J] processes, and sBtwith
| 5] processes. Consider riiof <7 such that: (a) all the 6 Communication-efficient implementations ofQ
processes are correct, (b) all the links between processes i
are eventually timely, (cA has an eventually timely sourse  We now seek algorithms fd@ that require only one process
so all the links froms to processes iB are eventually timely, to send messages forever (this also implies that the num-
(d) for every process # sin A, all the links fromr to pro- ber of links that carry messages forever is linear rather tha
cesses irB are permanently crashed, and (e) all the outpgtiadratic im). In order to achieve this, Theorem 28 implies
links of every process iB are permanently crashed. So inhat we must strengthen the system mdgieh this section,
run R, any proces$ < B can receive messages only fromwe first give a communication-efficient algorithm for for
processs: all messages sent by other processgsdce lost. systemS'+ (i.e., a systent where all links are fair), and
Note that in runR, for every process| € A and every then we modify this algorithm so that it works in syst&h
processp € B, there is a time after which the leaderegpfs (i.e., a systen8where only the links to and from some un-
not p. Intuitively, this is becausp may eventually crash, andknown timely process are fair).
sincep’s output links are permanently crashedyould not
be able to noticg’s crash (we omit this proof as it is similar
to one given above). 6.1 Implementing? in systemS*™
We claim that inR, every process i sends messages
forever to every process iB. Suppose, for contradiction, We now give a communication-efficient algorithm f@rin
that inR some procesg € A does not send messages forevgystemS™. Recall that inS** there is an eventually timely
to some procesg € B. We consider two possible cases.  source and all the links are fair. o N _
Suppose:] = s. Recall that |rR' p can receive messages One Slmple attempt to get communication eﬁ|C|en.C)/ IS
only from q (= ). Since inR there is a time after whichy ~as follows. Each process (a) sendsi¥e messagesnly if
does not send messagestdhen eventually stops receiv- it thinks it is the leader(b) maintains a set of processes,
ing messages. So, by the Claim,Rthere is a time after calledactive from which it received an AVE message re-
which the leader op is p. Recall that irRthere is a time af- cently (an adaptive timeout is used to determine the current
ter which the leader ajis not p. Thus, in rurR correct pro- Set of active processes), and (c) chooses as leader the pro-
cessep andq do not reach agreement on a common leadg®ss with smallest id in its settive* Such a simple algo-
— a contradiction. rithm would work in a system whewdl correct processes are
Now suppose] # s. Let R be a run ofe7 which is sim- €ventually timely sources. But in systesn™, it would fail:
ilar to R, except that the eventually timely sourcajisather for example, ifS™* hasonly oneeventually timely source
thans. More preciselyR is like R, except that all the links @nd this process happens to have a large id, the leadership
from sto processes iB are permanently crashed, and all thgould forever oscillate among the correct processes that ha
links from q to processes iB are eventually timely. Since & Smaller id. o _ _
no process il can communicate with anyone (their output 10 fix this problem, we use a similar technique as in our
links are permanently crashed in bd@randR)), processes Previous algorithm (in Figure 5): a process uses accusation
in A cannot distinguish between ruRsandR/, and so they COUNters, not process ids, to select the leader among pro-
behave the same R and F¥ Thusy |nR (as in R) there is a cesses in itactiveset. More pI’ECIsely, each process keeps a

time after which (a) the leader ofis notp, and (b)q does "1 A process always considers itself to be active, so if it daghave

not S_end messages o _Since the link fromq to p is the recent Ave messages from any other process, the process picks itself
only input link of p that is not permanently crashed Ry, as leader.
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counter of the number of times it was previously suspectptiase number (and it does not communicate this new phase
of having crashed, and includes this counter in thev& number to any process): this effectively caugésignore all
messages that it sends. Every process keeps the most upk®spurious ACUSATION messages that may result iffwhen
date counter that it received from each process, and pickgmagluntarily stops sending AVE messages.

its leader the process with the smallest counter among pro- As we mentioned above, as long as a progessnsiders
cesses in itactiveset (using the process ids to break tiesitself to be the leadem periodically sends an AVE mes-

If a process times out on a procespin active,, premoves sage to every process except itselfpl€onsiders that some

q from active, and it sends an “accusation” messageyto other process is the leader, it does not send any# mes-
which causes to increment its own accusation counter. Theages. This is done using a timer, denoBssthdAliveTimer
hope here is that, as with the previous algorithm, the countes follows. Whenevep changes itsactive set or the ac-

of each eventually timely source remains bounded (becawsmation counter of a process,recomputes its leader by
itis timely and all its output links are eventually timelghd executing thaupdateLeaddl) procedure. If the leader qf

so the correct process with the smallest bounded counteclimngesp checks whether it has just gained or lost the lead-
eventually selected as the leader by alll. ership.

S++-'”;: ﬁgg;ﬁf;gt%gg@éﬁ Sogﬁ)vneg c?t?r?tirng: \gﬁ rg(;rrlres():/tsterg If p gained the leadership,turns on itsSendAliveTimer
: P by setting it to O (in line 4). Note thap periodically

cesses may keep increasing forever, causing the leadership o o' \vhethegendAliveTimer= 0 (line 15). If it is
to keep oscillating forever. To see this, consider the follo ' '
thenp sends an AIVE message to every process: p,

ing scenario in a system with = 2 processes, namelp ; o ;
ands. (We can extend this scenario to any number of pro- and it resetsSendAliveTimeto 1 to schedule its next
sending of AIVE messages (lines 16-17).

cesses.) Processs the eventually timely source, while pro- If p lost the leadershifp increases its phase number and

cessp is correct but its output links are not always timely.™ ; PR > M ,
Suppose that the accusation counterp ahdsare 1 and 3, pturns off |tsSendAI|veT|me_lny setting it to—1 (line 7)
— this cause® to stop sending AIVE messages.

respectively, but, becausehas not received a recent mes-

sage fromp, s considers itself to be the leader. Theme- Figure 7 describes the algorithm by giving the pseudo-
ceives an AIVE message fronp, and sop joins ss active cqde of an (arbitrary) process and Figure 6 describes the
set. Sincgy’'s accusation counter is smaller than the countgyca| variables ofp. It is easy to translate the pseudo-code
of s, the leader of become. Whensgives up the leader- ¢ p into an automaton fop. Without loss of generality, we
ship, it stops sending AVE messages (for communicationcapn, agssume that: (1) for some integeeach iteration of the
efficiency). Unfortunately, this triggerp to time out ons repeat forever loop (lines 13-34) takes at mostutoma-
and sop sends an ACUSATION message that causeso ton steps (this is because there are no infinite loops, wait-
increment its accusation counter to 4. Npi& ALIVE MeS-  jng statements, or similar constructs in lines 14—34), &d (
sages become slow, causing the following chain of evenggch jteration of the repeat forever loop takes at least two
(a) stimes out onp, (b) ssends an ACUSATIONtO p, caus- complete automaton steps.

ing p to increment its accusation counter to 2,$¢¢mMoves  \we now give an intuitive outline of the algorithm’s proof

p from its activeset, causings to consider itself to be the ot correctness. Recall that in each run there is at least one
leader again. Now, the accusation counterpandsare 2 ayentually timely source. Unlike the previous algorithm
and 4, rgspectlvel_y, and this scenario can repeat itself f% Figure 5), in this algorithm we cannot immediately ar-
ever. This results in a run where the accusation countersygfs that there is a time after which processes stop timing out
p andskeep increasing and the leadersdfeeps oscillating g, s, since processes may time out®becauss decides to
betweerp ands. stop sending AIVE messages. However, whestops send-

To fix this problem, a procegsshould increment its own ing ALIVE messages, it increments its phase number and ig-
accusation counter only if it receives a “legitimate” acus nores any subsequentAUSATION messages with previous
tion, i.e., one that was caused by the delay or loss of opkase numbers. Thus, eventualgtops increasing its own
of the ALIVE messages that it previously sent (and not lgounter. Consider all the correct processes with a counter
the fact thatp voluntarily stopped sending them). To dethat stops increasing, and léte the correct process with
termine whether an accusation is legitimate, each progesthe smallest final counter. Then, there is a time after which
keeps track of the number of times it hasluntarily given ¢ considers itself as leader, sincénds that other processes
up the leadership in the past — this is its curngindse num- either have a higher counter or are not active. Thus, there is
ber — and it includes this number in each. &/E message a time after whiclY sends AIvE messages periodically to
that it sends. If any procesgstimes out onp and wants to other processes. Because all links are fair, correct pseses
accusep, it must now include its own view ofp’s current receive ALIVE messages from infinitely often. Moreover,
phase number in the @2CUSATION message that it sends toeventually processes stop timing out 6ifotherwise, they
p; p considers this ACUSATION message to be legitimatewould keep sending ACUSATION messages towith an up-
only if the phase number that it contains matches its owto-date phase number, causifigicounter to increase with-
Furthermore, whenever gives up the leadership and stopsut bounds). Therefore, there is a time after which all cor-
sending A.IVE messages voluntarily increments its own rect processes considéto be active. Since eventuallyis
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| Variable | Intuitive description |
active set of processes thatconsiders to be currently competing for leadership
counterq] p’'s estimate ofy's accusation counter
(the number of times processes previously timed ouf)on
phaseq] p’s estimate of the number of times thgvoluntarily relinquished the leadership

SendAliveTimer count-down timer used to periodically sendIXE messages
(ifitis setto—1 it is deactivated)

timer{q] count-down timer used to determine whethes currently active
(ifitis setto—1 it is deactivated)
timeouiq] length ofp’s timeout onq
leader the leader op

(p chooses its leader to be the procésdgth the smallest tuplécountef?], ¢)
among all the processes|i's activeset)
newleader | temporary variable for storing a newly computed leadep of

Fig. 6 Local variables of procegsin the algorithm of Figure 7.

the correct process with the smallest counter, there isa tigph > phaséi[q]. Thereaftercounteg[q] > Counte[‘q[q} and

after which all correct processes pi€ks their leader. So thephas%[q} > phas%[q] (becausecounteg,q] and phasq,[q}

algorithm implement€2. . are monotonically nondecreasing). 0
The communication efficiency of the algorithm follows

from the fact that (a) after a procegs# /¢ elects/ as its Lemma 33 For every correct process p and every process q,
leaderp stops sending AIVE messages, (b) processes eveiif-(a) g € active, holds infinitely often then (b) q is correct,
tually stop sending AcUsATION messages th and (c) pro- and for every timet, there is a time after which coupigr>
cesses eventually stop sending@USATION messages to Counte['q[q] and phasglq] > phaséi[q].

any proces® # ¢ because they stop receiving &/E mes- .
sages fron. Proof (Similar to the proof of Lemma 4.) Ip = g, con-

We now give the detailed proof that the algorithm in Figdition (b) holds because is correct, andcountep|p]
ure 7 implements2 in systemS** and that it is communi- and phasg[p] are monotonically nondecreasing. Now as-
cation-efficient. Henceforth, we consider an arbitrary ofin SUMe thap 7 q andq < active, holds infinitely often. By

this algorithm in systen$*+, ands is an eventually timely L€émma 30preceives AIVE messages frominfinitely of-
source in this run. ten. By Lemma 32, condition (b) holds. ad

Lemma 30 For every correct process p and every proceésemma 34 For every distinct correct processes p and g, if

q+ p, if q € active, holds infinitely often then p receives? Sends a message of typdo q infinitely often, then g re-
ALIVE messages from q infinitely often. ceives a message of typerom p infinitely often.

Proof Let p andqbe distinct correct processes, and suppose
thatp sends a message of type Tgdnfinitely often. Since

Observation 31 For all processes p and g, countgg] and  the link p — q is fair, a message of type T is delivered to

phasg|[q] are monotonically nondecreasing with time. g from p infinitely often. Sinceq is correct,q executes an
infinite number of iterations of its repeat forever loop. In

Lemma 32 For every two processes # q, if p receives each such iteratiorg tries to receive one message of each
ALIVE messages from q infinitely often then q is correct, artgpe from every process other thgrincludingp. Therefore,
for every time t, there is a time after which courfier > qreceives a message of type T frgninfinitely often. O
countef[q] and phasg[g] > phasg[q}.

Proof Identical to part (a) of the proof of Lemmal. 0O

Recall thats is an eventually timely source in the run
Proof (Similar to the proof of Lemma 3 part 1.) Consideunder consideration.

two processep # g, and suppose thagi receives AIVE )

messages frony infinitely often. Thenq sends such mes-Lemma 35 There is a constantr > 0 such that, for all
sages infinitely often, and sq is correct. Consider any kK = 0 and every time t, process s executes at least k com-
timet. Eventuallyp receives a message= (ALIVE, gentr, qu)lete iterations of its repeat forever loop during time ivia

that is sent byq after timet. Note thatcounteg|g] and (t,t+kal.

phasg[q] are monotonically nondecreasing. Sirgeends
m after timet, qcntr > counteg[q] and qph > phas%[q}.
When p receivesm from g, p setscountep[q] to a value Definition 36 Let a > 0 be a constant that satisfies Lem-
v > qcntr> counte['1 [q], andp setsphasg|[q] to a valuey >  ma 35.

Proof Identical to the proof of Lemma 5. a
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CODE FOR EACH PROCES®:

procedure updateLeadd))
1 newleader— ¢ such thafcountef/],¢) = min{(countefq],q) : g € active}
if newleadet# leaderthen { if the leader ofp changes theh

2

3 if newleadee= p then { if p gains the leadership thén

4 SendAliveTimes 0 { p setsSendAliveTimes 0 to start sendind\LIVE messages

5 if leader= pthen { if p loses the leadership thén

6 phasép| < phasép| + 1 { p increases its phase number gnd

7 SendAliveTimer —1 { p setsSendAliveTimee —1 to stop sendind\LIVE messages
8 leader— newleader { p updates its leader variabje

main code

{ Initialization }

o foreachqe I7 do countefq] < O; phaség] < 0

v for eachqe 1\ {p} dotimeoufq] — n +1; timer[g] — —1
u active— {p}

©» leader— L

1z repeat forever
14 updateLeadd)

15 if SendAliveTimet 0 then

16 send(ALIVE,countefp|, phasép]) to every process except
17 SendAliveTimes n

18 foreachqe 1\ {p} do

19 if receive(ALIVE,qcntr,gph) from qthen

20 active— activeu {q}

2 countefq] < max{countefq|,gcntr}

2 phaseéq] — max{phaséq|,gph}

23 timer|g] < timeoufq]

2 if timer{g] = 0 then

2 send(AcCuUsATION, phasgq]) to

2 active— active— {q}

2 timeoufq] < timeouiq] + 1

2 timerlg] — —1

2 if receive(AccusaTioNn, ph) from g then

a0 if ph= phasép| then

a countefp| < countefp] + 1

e if SendAliveTimer 0 then SendAliveTimer— SendAliveTimer 1
3 foreachqe 1\ {p} do

au if timer{g] > 0 thentimer{q] < timer{g] — 1

Fig. 7 Communication-efficient implementation 6f for a systenSwhere all links are fair.

Recall thatn > 1 is the “timeout” value ofSendAlive- 34). Suppose thatsends afALIVE, —, k) message to a pro-
Timer (see line 17). cessp # sat some time (line 16). Note thaphasg[s] = k at
Definition 37 LetA’ = (n+1)a. timet, and that in line 17 of the same iteration of its repeat

forever loop s setsSendAliveTimerto n > 1.
Lemma 38 For every process g s and every k> 0, if s
sends anALIVE,—,k) message to p at some time t then
sends anothefALIVE, — k) message to p during time inter-
val (t,t +A’], or phasg[s] > k holds at time t A’.

Consider the firstn + 1) iterations of the repeat forever
Isoop thatsfinishes to execute after timgincluding the iter-
ation thatsis executing at tim¢). Lett’ be the time whers
completes the last one of these iterations. By Lemma 35, for
Proof After s executes its initialization code (lines 9-18), everytimet, sexecutes atleaé) +1) complete iterations of
starts its first execution of the repeat forever loop (lin8s 1lits repeat forever loop during time intenv@lt + (n + 1)a].



On implementing Omega in systems with weak reliability ayrchrony assumptions 17

And so, we have’ <t+(n+21)a, ie.,t' <t+A’. Now Definition 41 Let A, ty ande be constants that satisfy 39
consider time intervdt,t’]. There are two possible cases: and 40, respectively.

1. During [t,t'], s does not set SendAliveTimén —1 in  Definition 42 Let{ = [(A’'+A)/e] +3.
line 7 in the updateLeader proceduie. this case, it is )
clear thats does not modify itsphase[s| during [t,t/] We now show that at the eventually timely sourse
(this is because modifiesphasg[s only in line 6 in the COUNteE[s] is bounded. To prove this, (1) we note tisdb-
updateLeadeprocedure), and sphasg[s| = k during crementountek[s] only if a process times out ax (2) we
the entire time intervalt, t']. distinguish two types of such timeouts epwhich we call
We claim that by the end of thg-th iteration of the ~Proper’ and “improper”, (3) we prove that proper timeouts
(n + 1) iterations that we are consideringsetsSend- onsdo not affe_ct:ounteg[s} (so only improper timeouts on
AliveTimes to 0. In fact, eithes does this by executing S¢an caussto incrementountek|s]), and (4) we show that
line 4 of theupdateLeadeprocedure in one of the first the number of improper timeouts @i finite. We now pro-
n iterations, os decrements itSendAliveTimefrom p  c€€d with this proof (Lemmas 44-47). o
by 1 (in line 32) in each one of the first iterations. Suppose that a procepstimes out ors. If this timeout

In either case, by the end of thpth iteration,s sets Was Started after timy and its value was at leagt we say
SendAliveTimer — O. that it is “proper”; otherwise we say it is “improper”. More

Thus, by the end of thén + 1)-th iteration, s finds Precisely,
that SendAliveTimer= 0 (in line 15), and it sends an
(ALIVE, —,K) message t@ (in line 16). This sending
must occur at least one step after sends the (1) aprocesp executes line 24 with = sandtimer,[s =0
(ALIVE, —, k) message t@ at timet, so, by the Maxi- at some time,
mum Rate of Execution property, it must occur after timg) p setstimery[s] to timeoup[s] in line 23 at some time
t. Moreover, this sending occurs by tirfe<t +A’. So ts < te, and
?sendAs/]ar(AleE,—,k) message t@ during interval (3) p does not setimery[g in line 23 during time interval
tt+A. ts, te].

2. During [t,t], s sets SendAliveTimetio —1 in line 7 in (st o ) ) )
the updateLeader procedurblote that during the exe- We say this timeout op on s is proper if and only if (a)
cution of this proceduresincrementphase[s| in line 6. ts > ta and (b)timeoup[s| > { at timets. A timeout that is
This increment must occur at least one step afsands NOt proper ISmpropet.
the (ALIVE, —, k) message t@ at timet (because after
sending and before incrementirggxecutes steps to try
to receive AIVE and ACCUSATION messages). Thus,

by the Maximum Rate of Execution property, the inCréygof | et p be any process. I times out ors only finitely
menting must occur after time Moreover, this incre- qtian the lemma trivially holds. Now suppopéimes out on
ment must occur by timé, so it happens during time ginfinitely often, i.e.,p executes line 24 wittimer,(s = 0
m_terval (t,t'], which is _contalned In mfter_ve(lt,t +A47. infinitely many times. Note that each time this occyrsn-
Sincephasg[s] = k at timet, phasg[s is incremented creasedmeouts (in line 27). So there is a time after which

during interval(t,t + A'], and itis monotonically nonde- timeou|s > ¢. Thus, there is a time after which every time-
creasing, we havphase[s| > k at timet + A’ out of p on'sis proper. 0

Definition 43 Suppose that

Lemma 44 For every process p, the number of improper
timeouts of p on s is finite.

From the above, it follows thatsends afALIVE, —,K)  Definition 45 An (ACCUSATION, ph) message that is sent

)
message t@ during interval(t,t + A’], or phase[s| > k o sis outdated ifoh < phasg][s) at the time this message is
holds at timet +4’. O gent.

Lemma 39 There is a constard and a time § such that, Note that any outdated\CCUSATION, ph) message that

for all processes p, if s sends a message m to p at some tgneceives does not affeatounteg[s). In fact, if s re-

t >t,, then mis delivered to p from s by time A. ceives arn{ACCUSATION, ph) message that is outdated, then
phasg[g] > ph at the timet this message was sent $0so

Proof This follows immediately from the fact thatis an phasg[s| > phalso holds at the time whesexecutes line 30

eventually timely source, and therefore all its output dinkof its code (becausghasg|s] is monotonically nondecreas-

are eventually timely. 0 ing). Thussdoesnotexecute line 31, i.e., it does not modify

. counteg|[s].
Lemma 40 There is a constang¢ > 0 such that, for every

k> 1and every process p, p takes at leastikne to execute Lemma 46 Suppose a process p times out on s (in line 24).
k complete iterations of its repeat forever loop. If this timeout is proper, then theACCUSATION, —) mes-

sage that p sends to s as a consequence of this timeout (in
Proof Identical to the proof of Lemma 13. O line 25) is outdated.
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Proof Suppose some procepgimes out ors, and that this Since time intervalts,ts+ A’] is contained in time in-
timeout is proper. More precisely, suppose that terval [t,t] (because <ts andts+ A’ <tg), s sends an

, . . (ALIVE, —,k) message t@ during (ts,ts+ A'] . By assump-
(1) pexecutes line 24 with = sandtimery[s| = 0 at some {ion (4),t, > t,. Thus, by Lemma 39 and the definitions of

timete, _ o _ tpandA, this(ALIVE, —, k) message is delivered @from
(2) p setstimery[g] to timeoup[s| in line 23 at some time sduring time intervalts, ts+ A’ + A]

s <te, . Lo o CLAIM 3: p executes at least one complete iteration of
®) Ftdto]esaggt setimery[g] in line 23 during time interval jis repeat forever loop during time intervit + A’ + A, td].
S tefs

. _ To see this, recall thagi executest least{ — 1 complete it-
(4) ts > ta andtimeoup(s| > ¢ at timets. erations of its repeat forever loop during time interftate) .

Suppose that the above timeout caupds send some Moreover, during time intervalls, ts + A" + 4], p executes
(ACCUSATION, k) message ts, and lett, > t, be the time @t MOSt[(A"+4)/e] = ¢ —3 complete iterations of its re-
when this occurs (in line 25). Figure 8 shows a timeline witR€at forever loop (this follows from the definition ). This
timests, te, andta. We must prove that thisAccusation, k) Implies Claim 3. o
is outdated, that is, we must show tiphiasg[s] > k at time Since an(ALIVE, —,K) message 1S delivered pfrom s
t.. Suppose, for contradiction, thahase[s < K at timeta. during time |nt_erva(ts,ts+_A + 4], andp executes at least
Sincephaselg is monotonically nondecreasing ad< t,, ©°N€ complete iteration of its repeat forever loop duringetim

phase[s] < k also holds at timé. interval [ts+ A’ + A, te], we conclude thap receives some
We first note thap executes at leagt — 1 complete it- (ALIVE,—,—) message frons during interval(ts,te] — a
erations of its repeat forever loop during time interfiat,]. contradiction to Claim 1. U

This follows from assumptions (1), (2), (3) and (4) abov
and the fact thap decreasetmery[s| by exactly 1 in each
repeat forever loop iteration (in line 34).

By Lemma 40,p takes at least({ — 1) time to execute
(¢ — 1) complete iterations of its repeat forever loop. Thu
from the abovete > ts+&({ —1). Sinced = [(A'+A)/e] +
3, we havde > ts+ A’ + A + 2¢.

CLAaIM 1: p does not receive anfALIVE,—, —) mes-
sages from s during time intervék, te]. To see this, note tha
such a receipt would caugeto settimerys] in line 23, and
this would happen durings, te] since, at timee, p executes
line 24. This would violate assumption (3).

Sincep sends affACCUSATION, k) message tgat time
ta in line 25,phasgs| = k at timeta. Sophasegs| = k also
holds at time. whenp executes line 24.

CLAIM 2: preceives at least on&LIVE, —, k) message
from s by timed Indeed, itk > 0 then the only way fop to
havephasg|s = k at timete is by receiving(ALIVE, —,K)
from s by timete. By Claim 1, p must receive such a mes
sage by times. Fork = 0, note that by timé;, p must receive
some (ALIVE, —,K') message frons that cause® to set
timerp[g] in line 23 at timets. Moreover k' cannot be greater

than 0 otherwis@hasg|s| > 0 at timets, sophasg(s| > 0 gy gefinition, ¢ is a correct process. Furthermore, by Lemma
at timete (sincephasg[s| is monotonically nondecreasing).47, countek[s] is bounded, i.e.¢s < . Thus,c, < =, i.e.,
contradicting thaphas%[s} =k =0 at timete. Thusk’ = 0. countey[(] is bounded.

This proves Claim 2.

From Claim 2,s sends ar(ALIVE, —,k) message t®@ Lemma 49 For every correct process p, if there is a time
at some time < ts. This implies thaphasg[s| = k at time  after which¢ € active,, then there is a time after which
t. Sincephasg[s| < k at timete (Wherete > ts > t), and leader, = /.
phasg[s| is monotonically nondecreasing, we conclude that
phasg[s] = k during the entire time interval, te|. Proof (Similar to the proof of Lemma 21.) Lgtbe any cor-

Thus, by repeated applications of Lemma 38 starting f&ct process, and suppose that there is a time after which
timet, it is clear that from time and up to timee, Ssends ¢ € activg,. We claim that for everyy # ¢, (i) there is a
an (ALIVE, — k) message t@ at least once everft’ time; time after whichq ¢ active,, or (ii) there is a time after
more preciselys sends at least orf\LIVE,, —, k) message to which (counteg[/],¢) < (countepq],q). From the wayp
p during each time intervdlr, T + A’] contained in interval setsleadeg, in the updatelLeadeprocedure, this claim im-
[t,te]. plies there is a time after whideader, = /.

Temma 47 counteg|s] is bounded.

Proof Note thats increases itcounteg[s only if it re-
geives an(ACCUSATION, —) message (lines 29-31). There
are two kinds of such/ACCUSATION,—) messages: (a)
those that are sent ®as a consequence ofpgoper time-
out ons, and (b) those that are sent toas a conse-
tquence of anmproper timeout ons. By Lemma 46, all
the (ACCUSATION, —) messages of kind (a) are outdated.
As we previously observed, such messages do not affect
counteg[s]. Thus only those messages of kind (b) may cause
sto incrementounteg|s|. By Lemma 44, the number of im-
proper timeouts osis finite. Since each timeout @tauses
at most ong ACCUSATION, —) message to be sent $pthe
number of(ACCUSATION, —) messages of kind (b) is finite.
Thereforecounteg|s] is bounded. O

Definition 48 For every proces$, let ¢, be the largest
'value of countep[p] in the run that we considecf = «

if countegp[p] is unbounded). Let be the process such that
(¢, ) = min{(cp, p) : pis a correct procegs
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s sends (ALIVE,—k) timerp[s]=0
p sends (ACCUSATION,k)

i timer [s]=timeout [s]
1 1

1

I

1

|
o—o o >

te

°
t, time

t t

S

Fig. 8 Timeline of events in proof of Lemma 46.

To show the claim, consider any process# ¢, and infinitely often, and these are the only messages of type
suppose that condition (i) does not hold, i.e., suppose thative that? sends tag infinitely often. By Lemma 34¢
g € active, holds infinitely often. We now show that condi-receives messages of typeLIXKE from ¢ infinitely often.
tion (i) is satisfied. By Lemma 33y is correct, and for every Thus,q receives messages of fofALIVE , —, phasé from
timet, there is a time after whictountep|q] > counteh[q]. ¢ infinitely often. Therefore, (*) there is a time after which
There are two cases: q hasphasg[(] = (phase Moreover,q adds/ to active
infinitely often. We claim thaig removes/ from active,
only finitely often, and so the lemma follows. Suppose, for
contradiction, thafy removes/ from active, infinitely of-
ten. Then,q sends(ACCUSATION,—) messages td in-
finitely often. By Lemma 34/ receiveS ACCUSATION, —)
messages frong infinitely often. By (*), there is a time
after which the only(AccusaTION,—) messages thaj

(counteg,[q],_q). . sends are{ACCUSATION,/phase messages. Thud, re-
(2) counteg[q] is unbounded In this case,countep(d] ceives(AccusaTION, (phase messages frong infinitely

is also unbounded. So there is a time after whiclye, So,/ eventually incrementsountey[¢] to a value

countep[¢] < ¢, < countep|q]. greater tharc, — a contradiction to the definition @y. O

So, in both cases, there is a time after which
(countep[/],£) < (counteg[d],q), i.e., condition (i) holds. BY Lemmas 49 and 54, we have

(1) counteg[q] is bounded.In this case,cy < », and so
there is a time when countef[q] = cq. So there is a
time after whichcounteg[q] > c4. Recall thaitg is cor-
rect andq # ¢, and so by the definition of, we have
(¢, ) < (cq,q). Sincecounteg /] < ¢, (always), there is
a time after which(countep[/],/) < (¢;,/) < (Cq,0Q) <

Lemma 55 For every correct process g, there is a time after
Observation 50 For every correct process p, there is a timavhich leadeg = /.

after which pe active,.
P @ Lemma 56 There is a time after which onl§ sends mes-

Proof Whenp executes its initialization code, it setstivg, sages.
to { p}. Thereafterp never removes itself froractive,. O
Proof There are only two types of messages: Ve and
Corollary 51 There is a time after which leadet /. AcCCUSATION. When a procesg considers that it lost the
. . ) . leadership, it stops sendingtA/E messages (by setting its
Proof By Observation 50, there is a time after whiCle  gengaliveTimeto —1 in line 7). Furthermorep resumes
active. The result now follows from Lemma 49. sending messages only if it considers itself to be the leader
; ; ; again (lines 3-4) and it seteader, = p (in line 8). So, by
Sﬁgggﬁ%?z There is a time after which phasé; stops Lemma 55, there is a time afterri/vhich omsends AIVE
messages.
Proof Note that! changephase|[/] only when it considers ~ We claim that only a finite number of @CUSATION
that it lost the leadership (in lines 5-6), and each time thigessages are sent. To see this, note that when a prpcess
occurs/ setsleader, # / (in line 8). By Corollary 51, this sends an ACUSATION message to a proceggin line 25),

can happen only a finite number of times. O p “turns off” timery[q] by setting it to—1 (in line 28). Af-
o ) ter this occursp can send another @CUSATION message
Definition 53 Let ¢phasebe the final value ophase[/]. to g only if p “turns on” timery[q] again (in line 23), and

this happens only ifp receives an AIVE message from
g (in line 19). Thus,p can send an infinite number of
ACCUSATION messages tq only if p receives an infinite
Lemma 54 For every correct process g, there is a time aftéfumber of AIVE messages frong. Since there is a time
which/ € active,. after which only/ sends AIVE messagesp can send an
infinite number of ALCUSATION messages only ta But p
Proof Letq be any correct process.df= /¢ then, by Corol- sends only a finite number of &CUSATION messages té:
lary 51, there is a time after whiche active. Now sup- Thisis because each tinpessends an ACUSATION message
poseq # ¢. By Corollary 51 and the definitions dphase to/, premoved from active,, and from Lemma 54, this can
and ¢, ¢ sends messages of for(ALIVE, —,¢/phase to g happen only a finite number of times. Thus each progess

Note that sincgphase[¢] is monotonically nondecreasing,
¢phaseis also the largest value phase|[/].
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1T : 1T1 other. So bothp andq keep thinking of themselves as the

L leader, forever.
: One attempt to solve this problem is to relay all the
ALIVE messages (like the @ZCUSATION messages) so that
the contenders for leadership, suchpaandq in the above
scenario, can all hear from each other. Although this sarhuti
works, it is not communication-efficient because it foraés
processes to send messages forever: the elected leader does
not stop sending AIVE messages, and each &k is re-

layed by all.
Fig. 9 Partitioning that may occur if we run the algorithm of Figdre To prevent partitioning while preserving communication
in systemS*. efficiency, we use the following idea: roughly speaking, if a

process hasp as its current leader, but receives aniv¥Ee
. message from a procegs# p, thenr sends a @BECcK mes-
sends only a finite number of FCUSATION messages to ev- sage tellingy about the existence gf (and some other rele-
ery process. U vantinformation aboup). CHECK messages can be lost, but
) if () r is the fair hubh, (b) g keeps sending AVE messages
From Lemmas 55 and 56, we get the following result: to h, and (c)h continues to prefep as its leader, theq will
) o _ ~eventually receive a @ECck message fronh and find out
Theorem 57 The algorithm in Figure 7 implement@ in  about its “rival” p. If this happensg “challenges” the lead-
system S*, and it is communication-efficient. ership ofp by sending accusations fif p does not appear
to be timely. This scheme prevents the problematic scenario
mentioned above, and it can be shown to work while pre-
6.2 Implementing? in systemS" serving communication efficiency: after the common leader
is elected, all the AlvE messages come from that leader,

We now describe a communication-efficient algorithm fgnd so there are no more4€Ck messages.

Q for systemS*. Recall that inS there is an eventually ~ The algorithm that incorporates the above ideas is shown
timely source and a correct process whose input and outfiuigure 10. In this algorithm, there ane-2 message types:
links are fair. ALIVE, CHECK, and ACCUSATION-p for each procesp.

Our starting point is the algorithm for syste®&i™ that Figure 10 describes the algorithm by giving the pseudo-
we gave in the previous section (Figure 7). We first not®de of an arbitrary procegs and Figure 6 describes the lo-
that this algorithm does not work in systeé® because in cal variables op (this algorithm has the same variables with
St some links can experienegbitrary message losses (inthe same meaning in as in the previous algorithm). It is easy
contrast toS™ where all the links are fair). The most ob+o translate the pseudo-code pfnto an automaton fop.
vious problem, and also the easiest one to solve, is tWdithout loss of generality, we can assume that: (1) for some
the ACCUSATION messages sent by a procgs® another integerb, each iteration of the repeat forever loop (lines 13—
processy may never reacky, because the link — g may 43) takes at modi automaton steps (this is because there are
have crashed. The obvious solution is foito send each no infinite loops, waiting statements, or similar constsunt
AccusaATION of g to all processes (including the unknowrines 14—43), and (2) each iteration of the repeat foreve lo
fair hub); any process that receives such a message relayakes at least two complete automaton steps.
once tog. This scheme preserves communication efficiency: We now give an intuitive outline of the algorithm’s proof
after the permanent leader emerges, there are no new aefworrectness. Recall that in each run there is at least one
sations, and so the relaying stops. eventually timely sourcs. As in the previous algorithm (in

A more subtle problem, and a tougher one to solve, kSgure 7), note that eventually stops increasing its own
that two leader contendegs and g may partition the pro- counter (because eventually the on\C@USATION mes-
cesses in two setfl, and g, such that processes i, sages thasreceives are messages with old phase numbers).
(including p) and those inq (including g) have p andq Consider all the correct processes with a counter that stops
as their permanent leader, respectively. This scenalis: il increasing, and let be the correct process with the small-
trated in Figure 9, can occur as follows: (a) the eventualgst final counter. Then, there is a time after whichon-
timely sources and the fair hukh are inf1p, and they are siders itself as leader, sinédinds that other processes ei-
distinct from p, (b) processes iifilq receive timely AIVE ther have a higher counter or are not active. Thus, there is
messages from, but they never hear from, (c) processes in a time after whict¥ sends AIVE messages periodically to
I, receive timely AIVE messages from, but, except foh, other processes. Unlike the previous algorithm, with this a
they never hear frong, and (d)h receives timely AIVE gorithm we cannot argue now that correct processes receive
messages from bogmhandqg, but choose as its permanent ALIVE messages frominfinitely often, because not all links
leader. In this scenario, nobody ever sendsCASATION are fair. However, recall that there exists at least one fair
messages tp or g. Moreover,p andq never hear from each hubh whose input and output links are fair, andre@ceives
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CODE FOR EACH PROCES®:

procedure updateLeadd))
1 newleader— ¢ such thafcountef/],¢) = min{(countefq],q) : g € active}
if newleadet# leaderthen { if the leader ofp changes theh

2

3 if newleadee= p then { if p gains the leadership thén

4 SendAliveTimes 0 { p setsSendAliveTimes 0 to start sendind\LIVE messages

5 if leader= pthen { if p loses the leadership thén

6 phasép| < phasép| + 1 { p increases its phase number gnd

7 SendAliveTimer —1 { p setsSendAliveTimee —1 to stop sendind\LIVE messages
8 leader— newleader { p updates its leader variabje

main code

{ Initialization }

o foreachqe I do countefq] < O; phaség] < 0

w foreachqe M\ {p} dotimeoufq] — n + 1; timer{q] — —1
u active— {p}

1 leader— L

1z repeat forever
14 updateLead€n

15 if SendAliveTimes 0 then

16 send(ALIVE,countefp|, phasep]) to every process except
17 SendAliveTimes n

18 foreachqe 1\ {p} do

10 if receive(ALIVE, gcntr,qph) from g then

20 active— activeu {q}

2 countefq] «+ max countefq],qcntr}

2 phaséq] — max phaséq], gph}

2 timer{q] < timeouiq]

2 if g+# leaderandp # leaderthen

2 send(CHECK, leader phaséleadet) to q

2 if receive(CHECK, r,rph) from g then

2 if timerr] = —1then

28 phasér] — max phasér],rph}

2 timerr] — timeoufr]

30 if timer{g) = 0then

a send(ACCUSATION-¢, phaséq]) to every process except
a2 active— active— {q}

3 timeoufq] < timeouiq] + 1

3 timerq] — —1

3 for eachr € I do

3 if receive(AccusATION-r, ph) from g then

a7 if r = pthen

38 if ph= phasép] then

39 countefp] < countefp] + 1

a0 elsesend(ACCUSATION-I,ph) tor

a if SendAliveTimer 0 then SendAliveTimes SendAliveTimer 1
2 foreachqe 1\ {p} do

® if timer{g] > O then timer{q] < timer{q] — 1

Fig. 10 Communication-efficient implementation 6f for systemS*.



22 Marcos K. Aguilera et al.

ALIVE messages from infinitely often. Moreover, eventu- Lemma 61 For every correct process p and every process g,
ally h stops timing out oré (otherwiseh would keep sending if (a) q € activg, holds infinitely often then (b) q is correct,
ACCUSATION messages téwith an up-to-date phase num-and for every timet, there is a time after which coupieir>
ber, causind’s counter to increase without bounds). Therecounteh [q] and phasglq] > phasg[q].
fore, there is a time after which considers to be active.
Since eventually is the correct process with the smalle
counter, there is a time after whitipicks/ as its leader.
Moreover, no process other thakeeps sending AVE
messages forever. This is because, if some propesy
kept sending AIVE messages forever thénwould receive
infinitely many such messages ahdvould send back in-
finitely many GHECK messages telling that/ is its leader. Lemma 62 For every correct process £ h, (1) if p sends
These GIECK messages would caugeto time out onf g message of typ€ to h infinitely often, then h receives a
infinitely often, andp would send ACUSATION messages message of typ€ from p infinitely often, and (2) if h sends
for ¢ infinitely often. These messages would be relayedmessage of typ® to p infinitely often, then p receives a
throughh to ¢, causing the counter of to grow without message of typ€ from h infinitely often.

bounds. o
Therefore, ¢ is the only process that keeps sendinBrOOf (Similar to the proof of Lemma 34.) Lgtbe a correct

ALIVE messages forever. Thus, for any correct proceB&Cess such that # h. (1) First, suppose that sends a
p # ¢, there is a time after which the leaderp€an be only Message of type T tblnﬂ_nlte!y often. Sincehis fair hub,h
p or £. Sincep eventually stops sendinglA/E messages, S correct and linkp — his fair. Thus, a message of type T

there is a time after which the leaderpfs not p. So there is delivered tch from p infinitely often. Sincehis correcth
is a time after which the leader gfis £. Thus the algorithm executes an infinite number of iterations of its repeat ferev
implementsQ. loop. In each such iteratioi, tries to receive one message

The communication efficiency of the algorithm follow €ach type from every process other tfianncluding p.
from the fact that (a) after a procegs# ¢ elects! as its Therefore h receives a message of type T frgminfinitely

leaderpst ding AVE (b Qften.
eacerpstops sendng messages, (b) processes eve (2) Now suppose thdt sends a message of type To

tually stop sending BECK messages, because afterelectinﬂf_ tely of hi is identical h
¢ as its leader, a process does not semE€k messages ' initely often. This case is identical to case (1) except t

to ¢, and it sends a BECK message to a procegs# ¢ We exchange the roles pfandh. =

only if it receives an AIVE message fronp, () processes  Recall thats is an eventually timely source in the run

eventually stop generatingdEUSATION messages, becausginder consideration.

they generate such a message only when a timer expires, _

but a timer is turned on only after the receipt of anive Lemma 63 There is a constantr > 0 such that, for all

or CHECK message, and (d) processes relay each generaten0 and every time t, process s executes at least k com-

ACCUSATION message only once. plete iterations of its repeat forever loop during time ivia
We now give the detailed proof that the algorithm in Figtt,t +Ka].

ure 10 |m_pI_ements2 in systemS*, anq that it is COMMUNI- byt |dentical to the proof of Lemma 5. 0

cation-efficient. Henceforth, we consider an arbitrary ofin

this algorithm in systen®'. Let s be an eventually timely Definition 64 Let o > 0 be a constant that satisfies Lem-

source andh be a fair hub, in this run. ma 63.

gi’roof (Similar to the proof of Lemma 33.) Ifp = q,
condition (b) holds becausp is correct, andcountep|p]
and phasg[p] are monotonically nondecreasing. Now as-
sume thatp # g andq € activg, holds infinitely often. By
Lemma 58 p receives AIVE messages frominfinitely of-
ten. By Lemma 60, condition (b) holds. a

Recall thatn > 1 is the “timeout” value ofSendAlive-

Lemma 58 For every correct process p and every procesﬁmer(see line 17)

g # p, if g € activg, holds infinitely often then p receives
ALIVE messages from q infinitely often. Definition 65 LetA’ = (n +1)a.

g Lemma66 For every process gt s and every k> O, if s
sends anALIVE, —, k) message to p at some time t then s
sends anothefALIVE, — k) message to p during time inter-
val (t,t +A’], or phase[s] > k holds at time t- A’.

Proof Identical to part (a) of the proof of Lemma 1.

Observation 59 For all processes p and g, counigq| and
phasg,[q} are monotonically nondecreasing with time.

) ) Proof (Similar to the proof of Lemma 38 noting that, in
Lemma 60 For every two processes  q, if p receives case 1 of that proofs cannot modifyphase]s] in line 28
ALIVE messages from g infinitely often then q is correct, algbcause no process ever sef@RECK,s, —) t0's.)
for every time t, there is a time after which counfef > After s executes its initialization code (lines 9-12),
countef;[q] and phasg[q] > phasg[q]. starts its first execution of the repeat forever loop (lings 1
_ 43). Suppose thatsends afALIVE, —, k) message to a pro-
Proof Identical to the proof of Lemma 32. O cessp# sat some time (line 16). Note thaphasg[s = k at
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timet, and that in line 17 of the same iteration of its repediemma 67 There is a constandi and a time § such that,
forever loop s setsSendAliveTimerto n > 1. for all processes p, if s sends a message m to p at some time
Consider the firstn + 1) iterations of the repeat forevert > ta, then mis delivered to p from s by time .

loop thatsfinishes to execute after timgincluding the iter-
ation thats is executing at tim¢). Lett’ be the time whers
completes the last one of these iterations. By Lemma 63, fof® X
every timet, sexecutes at leagt) + 1) complete iterations of a'€ eventually timely.
its repeat forever loop during time interv@lt + (n + 1)a].
And so, we have/ <t+(n+21)a,ie.,t' <t+A’. Now
consider time intervdt,t’]. There are two possible cases:

Proof This follows immediately from the fact thatis an
ntually timely source, and therefore all its output dink
O

Lemma 68 There is a constant > 0 such that, for every
k > 1 and every process p, p takes at leastikne to execute
k complete iterations of its repeat forever loop.

1. During [t,t'], s does not set SendAliveTimén —1 in
line 7 in the updateLeader proceduta.this casesdoes
not modify its phasg[s] during [t,t']: the only places Definition 69 Let A, t4 and& be constants that satisfy 67
where's could possibly modifyphasg[g is in lines 6 and 68 respectively.

or 28, buts does not execute line 6 durirgt’] since finit ,
s does not execute line 7 by assumption, andoes Definition 70 Let{ = [(A'+A)/e] +3.

not modify phase[g] in line 28 because no process eV&lamma 71 For all processes p and r and everyko, if p

_SrindS]SCHE%K’S’*)_tOdedu.e t(:hthe cthectk In I_mte 24i receives g CHECK, I, k) message at some time t then r sends
erefore phasg|[s| = k during the entire time interval ;| (ALIVE, k) message by time .

[t,t'].
We claim that by the end of thﬁ-th iteration of the Proof Let p andr be processes ard> 0. Suppose thab

(n +1) iterations that we are consideringsetsSend- receives §CHECK, I, k) message at some tirheFor contra-
AIiveTimeg to 0. In fact, eithes does this by executing diction' suppose does not send a(AUVE,f’ k) message
line 4 of theupdateLeadeprocedure in one of the firstpy timet. Letr’ be the process to first send @HECK, T, k)

n iterations, osdecrements itSendAliveTimegifrom 1 message, and Iétbe the time when this happens. Note that
by 1 (|n line 41) in each one of the flrﬂ iterations. t/ <t and, at time’, phase,[r] — k. Thenr’ 7& r since a pro-

In either case, by the end of thpth iteration,s sets cess does not send aHEck message for itself due to the

SendAliveTimer « 0. - _ check in line 24. There are now two possibilities.
Thus, by the end of thén + 1)-th iteration, s finds

that SendAliveTimer= 0 (in line 15), and it sends an — If k> Othen, attimé’, phase [r] =k > 1. There are only
(ALIVE, —, k) message t@ (in line 16). This sending two places where' can sephase [r] tok: line 22 or 28.

Proof Identical to the proof of Lemma 13. a

must occur in a subsequent step aftersends the
(ALIVE, —, k) message t@ at timet, so, by the Maxi-
mum Rate of Execution property, it must occur after time
t. Moreover, this sending occurs by tirtfle<t +A’. So

s sends anALIVE, —,K) message t@ during interval
(t,t+4'.

. During [t,t'], s sets SendAliveTimeto —1 in line 7 in
the updateLeader procedurlote that during the exe-
cution of this proceduresincrementphasg[s| in line 6.
This increment must occur at least one step aftands
the (ALIVE, —, k) message t@ at timet (because after
sending and before incrementirggxecutes steps to try
to receive AIIVE and ACCUSATION messages). Thus,
by the Maximum Rate of Execution property, the incre-
menting must occur after time Moreover, this incre-
ment must occur by tim€, so it happens during time
interval (t,t’], which is contained in intervalt,t + A’].
Sincephasg[s| = k at timet, phasg[g] is incremented
during interval(t,t +A’], and it is monotonically nonde-
creasing, we havphase[s| > k at timet + A’.

From the above, it follows thatsends afALIVE, —, k)

In the first casey’ previously receivegALIVE,—,k)
from r, which contradicts the assumption thatoes not
send anALIVE, —, k) message by time In the second
casey’ previously receive§CHECK, I, k), which means
some process sen@€HECK,r, k) before timet’, which
contradicts the choice of.

If k=0 then, attimé’, leadef, = r, and sa’ previously
setleadey to r. When this happened,e active, (be-
cause the leader is picked among processexciive.
Sincer’ # r, r’ previously added to activg and so
r’ previously received dALIVE,— k') message from
r for somek’. Then,k' = 0 (otherwise upon receiving
such a message setsphasér] > 0, and so at time
t’, phase[r] > 0, contradicting the fact that at timé
phase[r] = k = 0). Thus,r’ receives aALIVE,—,k)
message from by timet, which contradicts the fact that
r does not send afALIVE, —, k) message by time O

Definition 72 Suppose that

(1) aprocesyp executes line 30 withh= sandtimer,[s] = 0

at some time,

(2) p setstimery[s] to timeoup(s] in line 23 or 29 at some

timets <te, and

message tq during interval(t,t + A’], or phaseg[s > k
holds at time +A'". O (3) pdoes not setimer,|g in line 23 or 29 during time in-

terval (ts, tg]-
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We say this timeout op on sis properif and only if (a) Since p sends anACCUSATION-s,k) message t® at
ts >ty and (b)timeoup[s] > ¢ at timets. A timeout that is timeta in line 31,phasg|s] = k at timet,. Sophasg|[s] = k
not proper ismproper. also holds at timé& whenp executes line 30.

Lemma 73 For every process p, the number of improper C"A.'M 2:s sends at Ieastor(@\L!v_E_ ’.*’_k) message at
timeouts of p on s is finite. some time K ts. There are two possibilities:

— If k> 0 then the only way fop to havephasg[s| = k at
timete is by receiving ALIVE, — K) from s, or receiving
Definition 74 An (ACCUSATION-s,ph) message is outdat-  (CHECK, s k) from some process, and this must happen
ed if ph < phasg[g] at the time this message is sent. by timete. From Claim 1, this receipt must actually hap-
pen by timds. If preceivegALIVE, —, k) from sby time
Note that any outdatedACCUSATION-s, ph) message ts thenssendg ALIVE, —, k) at some timeé <t. If pre-
that s receives does not affecbunteg[s]. In fact, if s re- ceives(CHECK, s, k) from some process by tintethen,
ceives an(ACCUSATION-s,ph) message that is outdated, by Lemma 71s also send$ALIVE,—,k) at some time
thenphasg[s| > ph at the timet this message was sentgo t <t

Proof Identical to the proof of Lemma 44.

so phasg[s] > ph also holds at the time whesexecutes — If k=0 then note thatinitiallyimer,[s = —1 and attime
line 38 of its code (becaug®asg]s| is monotonically non- te, timerp[s| = 0. The only way forp to changeimer,[q]

decreasing). Thus,does not execute line 39, i.e., itdoes not from —1 to a nonnegative value is fgo to receive
modify counteg[s). (ALIve, —,K') from s or (CHECK,s,k’) from some pro-

] o cess, for somé&'. This happens by timg, and so from
Lemma 75 Suppose a process p times out on s (in line 30). cjaim 1, it happens by tim&. Moreover,k’ = 0, oth-
message that p sends in line 31 as a consequence of this 4 positive value by times, and sophasg|s] # 0 at
timeout is outdated. time t,, a contradiction. Thus, by tim&, p receives
(ALIVE,—,0) from s or (CHECK,s,0) from some pro-
cess. In the first casesendg ALIVE, —,0) at some time
t <ts. In the second case, by Lemma &lalso sends

(1) p executes line 30 witq = sandtimer,[g = 0 atsome  (ALIVE,—,0) at some time < t.
timete,

(2) p setstimery[s] to timeoups] in line 23 or 29 at some 1 Nis shows Claim 2. : :
timets < te, Claim 2 implies thatphasg[s] = k at time t. Since

(3) p does not setimery|[s] in line 23 or 29 during time in- phasg[s] < k at timete (wherete > t > t), andphasg]s is
terval (ts, te], and monotonically nondecreasing, we conclude {hizdsg[s] =

(4) ts > t, andtimeoup[s) > ¢ at timet. k during the entire time intervad, te]. _
Thus, by repeated applications of Lemma 66 starting at
Suppose that this timeout causg@sto send some timet, itis clear that from time and up to timee, S sends
(ACCUSATION-s, k) message, and ldt > te be the time an(ALIVE, —, k) message t@ at least once everg’ time;
when this occurs (in line 31). We must prove that thisore preciselyssends at least orfdLIVE, —, k) message to
(AccUsSATION-s k) is outdated, that is, we must show thap during each time intervalr, T + A’] contained in interval
phasg[s] > k at timet,. Suppose, for contradiction, that]t,te].
phasg[s| < k at timet,. Sincephasg[s] is monotonically Since time intervalts,ts + A’] is contained in time in-
nondecreasing and< t,, phasg[s) < kalso holds attim&. terval [t,ts] (because < ts andts+ A’ < te), s sends an
We first note thap executes at leagt — 1 complete it- (ALIVE,—, k) message t@ during (ts,ts+A’] . By assump-
erations of its repeat forever loop during time interftate].  tion (4),ts > ta. Thus, by Lemma 67 and the definitions of
This follows from assumptions (1), (2), (3) and (4) abovéy andA, this (ALIVE, —, K) message is delivered fofrom
and the fact thap decreaseimery|s| by exactly 1 in each sduring time intervalts,ts+ A’ 4 A].

repeat forever loop iteration (in line 43). . CLAIM 3: p executes at least one complete iteration of
By Lemma 68,p takes at least(¢ — 1) time t0 €xecute s yeneat forever loop during time intervitl + A’ + A tg].

(¢ — 1) complete iterations of its repeat fore\,/er loop. Thug gee this, recall thai executesat least? — 1 complete it-

from the abovele > b+ £(¢ —1).Sinced = [(A'+A4)/€]+  erations of its repeat forever loop during time interféals).

3, we havéle > ts + A"+ A + 2¢. Moreover, during time intervals,ts+ A’ 4+ A], p executes
CLAIM 1: p does not receive anfALIVE,—,—) mes- at most[(A’+A)/e] = { — 3 complete iterations of its re-

sages from s, or anyCHECK, s, —) messages, during timepeat forever loop (this follows from the definition &. This

interval (ts,te]. To see this, note that such a receipt woultnplies Claim 3.

causep to settimery[s] in line 23 or 29, and this would hap-  Since an(ALIVE, —, k) message is delivered ffrom s

pen during(ts, te] since, at timde, p executes line 30. This during time intervalts, ts+ A’ + A], andp executes at least

would violate assumption (3). one complete iteration of its repeat forever loop duringetim

Proof Suppose some procepgimes out ors, and that this
timeout is proper. More precisely, suppose that
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interval [ts+ A’ 4+ A, te], we conclude thap receives some Proof This proof is identical to the proof of Lemma 49 (ex-
(ALIVE,—,—) message frons during interval(ts,te] — a ceptthatit uses Lemma 61 instead of Lemma 33), and hence
contradiction to Claim 1. O we omitit here. O

The above lemma considersCAUSATION messages Observation 80 For every correct process p, there is a time
sent in line 31. A process that receives such messages raftg¢r which pe active,.
forward itin line 40. The next corollary says that if a timéou
is proper then any ACUSATION that it generates (whetherProof Whenp executes its initialization code, it setstive,
inline 31 or 40) is outdated. to {p}. Thereafterp never removes itself froractive,. O

Corollary 76 Suppose a process p times outon s (inline 3@erollary 81 There is a time after which leades ¢.

If this timeout is proper, then everyACCUSATION-S, —)

message that is sent to s (in line 31 or 40) as a consequeRggof By Observation 80, there is a time after whiéte
of this timeout is outdated. active. The result now follows from Lemma 79. O

Proof By Lemma 75, if a procesp times out ons Corollary 82 There is a time after which phagé stops
(in line 30) and this timeout is proper, then eVer¥hanging.

(ACCUSATION-S, —) message thagh sends to all other pro-

cesses in line 31 as a consequence qf this timeout is OBfgof Note thatl changephase[¢] only when it considers
dated. Let(ACCUSATION-S,ph) be the first such messag&nat it lost the leadership (in lines 5-6), and each time this
that p sends, a_nd let be the time at which it is sent. Sincegeeyrsy setsleadey # ¢ (in line 8). By Corollary 81, this
this message is outdated, then eveACCUSATION-S,ph) g happen only a finite number of times. 0
that is sent at timd’ >t is also outdated (this is be-

causephasg|s| is monotonically non-decreasing). In parpefinition 83 Let ¢phasebe the final value ophase[].
ticular, every (ACCUSATION-s,ph) message that is sent

by a process ta in line 40 (after receiving one of thengte that sincephasg[(] is monotonically nondecreasing,
_(ACCUSATION—S, ph) messages sent earlier pyin line 31) (phaseis also the largest value phase[/].
is also outdated. O

Lemma 84 For every correct process p, there is a time after

Lemma 77 counte]s| is bounded. which if leadep, = ¢ then phasg{(] > (phase.

Proof Note thats increases itscounteg[s] only if it re-
ceives anfACCUSATION-s, —) message (lines 35-40). Ther
are two kinds of sucHACCUSATION-s,—) messages: (a)
those that are sent ®as a consequence ofpaoper time-
out ons, and (b) those that are sent tbas a conse-

guence of arimpropertimeout ons. By Corollary 76, all

: he beginning of infinitely many iterations of the repeat for
the (ACCuUSATION-s,—) messages of kind (a) are outdated’ L ) .
As we previously observed, such messages do not aff%?(rj(ljoodpi Nott_e tha::nmatlly¢act|vgpti|_ncr(]e£7é P, ar}dlscf 20
counteg[s]. Thus only those messages of kind (b) may caukpdced laclivg, atleast once, and this happens In in€ 20.

sto incrementountet[s]. By Lemma 73, the number of im- _ \We claim thatl is added toactive, in line 20 infinitely
proper timeouts osis finite. Since each timeout arauses ©ften- Indeed, suppose not and consider the last time when

at mostn— 1 (ACCUSATION-S, — ) message to be sent & ¢ is added toactivg,. When this happengimer,[/] is set

the number of ACCUSATION-s, —) messages of kind (b) is [© fimeoup[¢]. Subsequently, each loop iteration decrements
finite. Thereforecounteg[s) is bounded. 0 timerp[4], until it finally reaches 0. Then, the next loop iter-

ation removeg from activg, and thereaftef is never again
Definition 78 For every procesy, let ¢, be the largest in active,—a contradiction that shows the claim.

%Droof Let p be a correct process. ff = ¢ then the lemma
ollows by the definition ophase Now supposep # /. If
there is a time after whickeader, # ¢ then the lemma fol-
lows vacuously. So, suppose thaader, = ¢ infinitely of-
ten. Then, by the wajeadey, is computed/ € activg, at

value of countep[p] in the run that we considec§{ =« Bytheclaim,preceive§ALIVE, —, —) messages from
if countep[p] is unbounded). Let be the process such thainfinitely often. Note that/ sends only finitely many
(¢s,¢) = min{(cp, p) : pis a correct procegs (ALIVE,—,X) messages witlk < ¢phase Therefore, there

is a time after which the onlyALIVE,—,y) messages re-
By definition,/ is a correct process. Furthermore, by Lemnggived from/ are those witly > /phase Whenp receives
77, counteg[s is bounded, i.e.gs < ». Thus,c, < o, i.e., One such message, setsphasg|¢] to y > ¢phase Then,
countey[/] is bounded. phasg[¢] > ¢phaseforever after, sinc@hasg[¢| is mono-
tonically nondecreasing.
Lemma 79 For every correct process p, if there is a time
after which/ € active,, then there is a time after whichLemma 85 A process p can send only finitely many
leader, = /. (ACCUSATION-£,X) messages with x ¢{phase.
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Proof Note that (1¥ sends only finitely manyALIVE, —,x)  of {phase p eventually receivefALIVE, —, fphase from /.
messages withx < /phase We now claim that (2) only So, there is a time after whicphasg[¢] = /phase Thus,
finitely many (CHECK, /,x) are sent withx < /phase In-  from (b), p sends infinitely manyAcCUSATION-/, /phasg
deed, when some correct procegsends a CHECK,/,X) messages in line 31 — a contradiction to Lemma 86. O
messagdeadeg, = ¢ andphasg[(| = x. By Lemma 84, there
is a time after which ifeadeg = ¢ thenphasg([¢] > {phase
Thus, there is a time after which af@HECK, £,x) message
thatq sends hag > /phase This shows the claim. Proof If h = ¢ the result follows by the definition dphase
Consider any process. We now claim thatr sends and the fact thaf < active. Now assuméi # ¢. By Corol-
(AccusaTION-/,x) only finitely many times withx < |ary 81 and the definition ofphase ¢ sends an infinite
Ephasein line 31. This claim immediately implies thenumber of(AUVE’f,gphaSe messages to all processes
lemma, because a process can relay ac@sATION mes- except itself. Moreover{ sends only a finite number of
sage in line 40 only if another process previously sent tr(iAUVE,_,y) with y # ¢phase Sinceh # ¢, this implies
message in line 31. To show the claim, suppose that pi§s Lemma 62 thah receives an infinite number of these
cessr sends(ACCUSATION-/,x) and (ACCUSATION-¢,X)  (ALIVE,—,/phasé messages frord. Therefore, there is a
inline 31 withx,x' < {phaseat two different times; andtz.  time after whichh hasphasg|[¢] = ¢phase Moreoverh adds
Then, between timets andty, r must setimer;[¢] to some ¢ to active, infinitely often. From Lemma 87h removes/

value different from—1. This can only happen in lines 23from active, only finitely often, and so the lemma follows.
and 29. Therefore, betwedénandt,, r must either receive O

(ALIVE, —,X") from ¢ or receive(CHECK, /,X") from some
process with¢’ < ¢phase By (1) and (2), this can only hap-By Lemmas 79 and 88, we have
pen finitely many times. This shows the claim. O

Lemma 88 There is a time after whicl € active, and
phasg[/] = ¢phase.

Lemma 89 There is a time after which leade& /.

Lemma 86 No process sendgACCUSATION-/,¢phase

S o= Lemma 90 There is a time after which onk/sendsALIVE
messages infinitely oftenin line 31.

messages.
Proof Suppose, for contradiction, that some procgss
sends infinitely manyACCUSATION-{, {phasg messages
in line 31. Note thatp # ¢, because a process never sen
ACCUSATION messages to itself. We claim thateceives 1. There is a time after whiche active,. In this case, by
such messages infinitely often, which is a contradiction be- Lemma 79, there is a time after whitdader, = /. After
cause (1) every timé receives such a message, it incre- this time,p does not send AVE messages.
mentscountey[¢], and so (2) eventuallyountey[¢] becomes 2. There is a time after which¢ active,. This implies that
greater tharc,. (a) there is a time after whicp does not receive any

Proof Consider any correct proceps ¢. From Lemma 87,
&gere are two possible cases:

To show the claim, first assume that=# h. Then
p sends (AccUsATION-/,¢phasg to h infinitely often.

By Lemma 85, and the easy fact that no process

sends (ACCUSATION-£,y) with y > ¢phase there is a
time after which (AccusaTiON-¢,¢phasg is the only

ACCUSATION-/ message thap sends. This implies, by

Lemma 62, thah receives(AcCUsATION-/,¢phasg from

p infinitely often. If h = ¢ then the claim follows. Oth-

erwise, every timeh receives (ACCUSATION-{, {phaseg
from p, it sends (ACCUSATION-{,¢phasg to ¢. So h
sends (ACCUSATION-¢, ¢phasg to ¢ infinitely often. By

Lemma 85, there is a time after which these are the only
ACCUSATION-¢ messages that sends. This implies, by

Lemma 62, that receives(ACCUSATION-/,/phasg from
h infinitely often, which shows the claim.
The argument for the cage= his very similar. O

Lemma 87 No process p adds and removet and from
its set activg infinitely often.

Proof Suppose, for contradiction, that some processlds
and removed to and fromactive, infinitely often. This
implies that (a)p receives(ALIVE,—,—) messages from
infinitely often, and (b)p sends(ACCUSATION-{, —) mes-

sages infinitely often in line 31. From (a) and the definition

ALIVE message frond and (b)p # h (by Lemma 88),
and (c)h # ¢ (because ih = ¢ then, by Corollary 81h
sends an infinite numberiAve messages tp, and so by
Lemma 62 preceives an infinite number oflAve mes-
sages fromh, which contradicts (a)). Now, suppose, for
contradiction, thatp sends AIVE messages infinitely
often. By Lemma 62h receives AIVE messages from
p infinitely often. By Lemmas 88 and 89, there is a
time after whichleadey, = ¢ and phasg[¢] = ¢phase
After that time, each timér receives an AIVE mes-
sage fromp, h sends & CHECK, ¢, {phase message to
p (sincep # ¢ andh # ¢). Thus,h sends infinitely many
(CHECK,/,¢phasg messages top, and there is a
time after which (CHECK,{,¢phasg are the only
(CHECK,—,—) messages thdt sends top. By Lem-
ma 62, this implies thap receives(CHECK, ¢, {phase
from h infinitely often. Therefore, we have the follow-
ing:
(i) Thereis atime after whicp hasphasg[/|=(phase
(i) pstartstimery[¢] and times out od infinitely often
(because of (a)), and
(iii) p sends infinitely manyAcCCUSATION-¢, {phase
messages td in line 31 — a contradiction to
Lemma 86.
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Thus, in both cases (1) and (2) there is a time after wphich  From Lemmas 91 and 92, we get the following result:
does not send AVE messages. O

Lemma 91 For every correct process p, there is a time aftef eorem 93 The_ algorithm .in F_igure 10 implements in
which leadep = £. system $, and it is communication-efficient.

Proof Let p be any correct process. From Lemma 87, there
are two possible cases: -
7 Final remarks

1. There is a time after whiche active,. In this case, by
Lemma 79, there is a time after whitrader, = /.

2. There is a time after which¢ active,. Since a process
g # p can remain inactivg, only if p keeps receiving
ALIVE messages frong, then, by Lemma 90 and the
fact thatp € activeg, (always), there is a time after which
activg, = {p}. So there is a time after whideader, =
p. From this time onp repeatedly sendsIAVE forever
— a contradiction to Lemma 90.

In their 2002 PODC tutorial [24], Keidar and Rajsbaum pro-
pose several open problems related to the implementation
of failure detectors in partially synchronous systems.dn p
ticular, they ask what is the “weakest timing model where
<. and/orQ are implementable but &2 is not”. As a par-

tial answer to this question, we note that, in contrasRto

O Z is notimplementable in syster8 In fact, it is easy to
show that this holds even if we strength8rby assuming

Thus, only case (1) holds. O that (a) all the links irSare reliable (i.e., no message is ever
Lemma 92 There is a time after which onlg sends mes- l0st), and (b) processes know the identity of the eventually
sages. timely source(s) irB. SoSis an example of a partially syn-

_ chronous system that is strong enough to implens2iuut
Proof There aren+2 types of messages:LAVE, CHECK, o0 weak to implement 2. Similarly, St is strong enough

and ACCUSATION-q, for each process. for an efficientimplementation ofQ, but still too weak for
1. By Lemma 90¢there is a time after which onlfy sends implementing® 2. Intuitively, this is because the level of
ALIVE messages synchrony inSandSt is not sufficient to get>Z: in both

2. Only a finite number oCHECK messages are seffb systems only theutputlinks of some correct process(es) are
see this, note that a procgssends a GECK message to eventually timely. Note that if we strengthen the synchrony
another procesg only if p receives an AIVE message of Shy assuming thdioththe input and output links of some
from g at a time wheneader, # g. By Lemmas 90 and correct process are eventually timely, thes? becomes im-
91, there is a time after which this cannot occur. plementable [2].

3. For any processq, only a finite number of In[24], Keidar and Rajsbaum also ask: “When is build-
ACCUSATION-q messages are senfo show this, ing ¢ more costly thanc.# or Q?”. Concerning this
let g be a process. It is sufficient to prove that eadfjuestion, note that any implementation®f” (even in a
processp sends a finite number of @CUSATION-g perfectly synchronous system) requires all alive processe
messages in line 31 (this is becaupe relays an to send messages forever, whilecan be implemented such
AccusATION-q message in line 40 only if anotherthat eventually only the leader sends messages (even in a
process previously sent this message in line 31 of iigak system such &).
code). Finally, it is also worth pointing out that the above results
When a procesp sends ar{ACCUSATION-0, —) Mes- provide an alternative proof thatZ is strictly stronger than
sage in line 31p “turns off” timery[q] by setting it to <.o: this can be deduced from the fact that(and hence

—1in line 34. After this occursp can send another ¢.&) is implementable in syste@but ©.Z is not.
(ACCUSATION-qg, —) message in line 31 only i “turns

on” timery[qg] again in line 23 or line 29, and this can .
happe_n only if (a)p receives an AIVE message from g?é?ggvslefg?;rgﬁ;tﬁ;gg|aclgﬂfr:fem?ld like to thank the anonymous
g (in line 19), or (b) p receives a(CHECK,—) mes-

sage (in line 26). Thusp can send an infinite number
of (AccusATION-g, —) messages in line 31 only if (g)
receives an infinite number of lAVE messages fronq References

or (b) p receives an infinite number ¢€EHECK, —) mes-
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