
Passing Messages while Sharing Memory
Marcos K. Aguilera
VMware Research

Naama Ben-David∗
CMU

Irina Calciu
VMware Research

Rachid Guerraoui
EPFL

Erez Petrank
Technion

Sam Toueg
University of Toronto

ABSTRACT
We introduce a new distributed computing model called m&m that
allows processes to both pass messages and share memory. Moti-
vated by recent hardware trends, we find that this model improves
the power of the pure message-passing and shared-memory models.
As we demonstrate by example with two fundamental problems—
consensus and eventual leader election—the added power leads
to new algorithms that are more robust against failures and asyn-
chrony. Our consensus algorithm combines the superior scalabil-
ity of message passing with the higher fault tolerance of shared
memory, while our leader election algorithms reduce the system
synchrony needed for correctness. These results point to a wide
new space for future exploration of other problems, techniques,
and benefits.

ACM Reference Format:
Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez
Petrank, and Sam Toueg. 2018. Passing Messages while Sharing Memory.
In PODC ’18: ACM Symposium on Principles of Distributed Computing, July
23–27, 2018, Egham, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3212734.3212741

1 INTRODUCTION
The distributed computing community has a dichotomy between
shared-memory and message-passing models. Books, courses, and
papers explicitly separate these models to present results and algo-
rithms. These models differ based on how processes communicate.
In the shared-memory model, processes can write and read data in a
common area of memory. In the message-passing model, processes
can send and receive messages to and from each other.

In this paper, we investigate the benefits of a hybrid model, called
message-and-memorymodel or simplym&mmodel, where processes
can both pass messages and share memory. We are motivated by
recent technologies that permit exactly that, such as Remote Direct
Memory Access (rdma) [39, 41, 65], disaggregated memory [55],
and Gen-Z [33]. By using both methods of communication, one can
devise a new genre of algorithms that could potentially combine
the advantages of shared-memory and message-passing algorithms.

∗Work done in part while the author was at VMware Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC ’18, July 23–27, 2018, Egham, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5795-1/18/07. . . $15.00
https://doi.org/10.1145/3212734.3212741

It has been proven that the message-passing and shared-memory
models are equivalent [11], by demonstrating that one model can
simulate the other. If that is so, what could be the benefit of com-
bining two models that are equivalent? Closer inspection of the
equivalence result reveals that it holds only in a certain sense and
under some assumptions. In particular, the equivalence is compu-
tational: it shows how algorithms for a problem in one model can
be translated to the other using an emulation. However, the em-
ulation does not preserve efficiency or synchrony (e.g., a timely
process in one model can become untimely as it waits for other
processes). Moreover, the emulation requires the assumption that
the message-passing model has a majority of correct processes, and
that processes know each other’s identities as well as the number
of processes in the system. In many cases these assumptions do not
hold.

In fact, we find that each model has its own advantages and
they benefit algorithms in different ways. Our contribution is to
propose the new m&m model that merges the capabilities of the
pure models, to identify some of the advantages of each pure model,
and to show that they can be combined in the m&m model.

To illustrate the advantages of combining the models, consider
the fundamental problem of mutual exclusion [26]. In this problem,
there is a doorway and a critical section. The goal is to ensure
that at most one process in the doorway enters the critical section
at a time. The traditional algorithms for this problem, such as the
bakery algorithm or Dijkstra’s algorithm, have been designed in the
shared-memory read-write model [51]. In that abstract model, these
algorithms have a common drawback: while some process is in the
critical section, other processes in the doorway must spin on one or
more shared-memory locations to know when the critical section
becomes empty again. Much work was devoted to mitigate this
problem, by making the spin local to each process (e.g., [23, 46–48]).

By allowing an algorithm to share memory and pass messages
in the m&m model, one finds very simple solutions that do not
have to spin: upon leaving the critical section, a process could
send a message to the processes in the doorway; those processes,
rather than spinning, go to sleep and resume execution when a
message arrives. This ability to react to data without spinning is
a characteristic of message passing. In practice, by avoiding the
spin, the CPU can be better utilized to run other processes. Such
benefits escape the abstract equivalence of the message-passing
and shared-memory models in [11].

Besides benefits, each model has limitations that the m&mmodel
can overcome. Shared-memory systems have worse scalability than
message-passing systems due to hardware limitations. For example,
a typical shared-memory system today has tens to thousands of
processes, while message-passing systems can be much larger (e.g.,

https://doi.org/10.1145/3212734.3212741
https://doi.org/10.1145/3212734.3212741

map-reduce systems with tens of thousands of hosts [25], peer-to-
peer systems with hundreds of thousands of hosts, the SMTP email
system and DNS with hundreds of millions of hosts, etc).

On the other hand, message-passing systems have limitations
on fault tolerance and synchrony. On fault tolerance, some fun-
damental problems in distributed computing—such as consensus
and atomic storage—require a majority of correct processes to be
solvable in the message-passing model, even under strong partial
synchrony assumptions, whereas the same problems can be solved
in shared memory with an arbitrary number of correct processes
using wait-free algorithms under partial synchrony, randomization,
or stronger hardware primitives. With respect to synchrony, due
to engineering reasons, message-passing systems have larger vari-
ances in their timing than shared memory: the slowest and fastest
message delays can be eight orders of magnitude apart (microsec-
onds to tens of seconds), while the variance in the execution speeds
of processes in shared memory is much smaller. As a result, par-
tial synchrony bounds tend to be much worse in message-passing
systems.

In this paper, we make these advantages and drawbacks more
precise. We show that the m&m model can enhance the robustness
of algorithms. We consider two aspects of robustness: the number
of process crashes that algorithms can tolerate and the synchrony
assumptions required by them. We illustrate how we improve the
first aspect through the consensus problem and the second through
the eventual leader election problem. In short, we show that mes-
sage passing and shared memory complement each other when
combined, allowing algorithms that have inherent advantages over
the pure message-passing and shared-memory models.

For consensus, we give an algorithm called Hybrid Ben-Or or
simply HBO that tolerates more than a majority of failures (like
shared-memory algorithms can), while scaling to a large system
size (like message-passing systems can). To scale to a large system,
the algorithm limits the number of processes that share a given
shared-memory location to a small constant number. We define an
undirected shared-memory graph, whose nodes are processes and
there is an edge between processes p and q if they share a memory
location. Due to hardware limitations, to scale the system we must
limit the maximum degree d of this graph [28, 43]. Our algorithm
employs expander graphs to tolerate amajority of crash failures—up
to f < (1− 1

2(1+h))n of them—in a system with n processes, where h
is the expansion of the graph as measured by the vertex expansion
ratio. Roughly, this ratio indicates by how much a set of vertices
expands each time we add their neighbors to the set. The higher
the expansion, the more failures the algorithm can tolerate. Our
algorithm is a simulation of a pure message-passing consensus
algorithm that requires a majority of correct processes, without
having that majority in reality. To do that, we use a wait-free shared-
memory consensus algorithm among each local neighborhood in
the shared-memory graph to emulate a virtual process in the larger
message-passing algorithm. This virtual process fails only if all pro-
cesses in its neighborhood fail. By taking a shared-memory graph
with high expansion, we ensure that even with a small d , many
processes can fail without affecting a majority of virtual processes.
Here, the topology of the shared-memory graph determines the
fault tolerance of consensus: graphs with higher expansion allow

for higher fault tolerance, because correct processes are adjacent
to (and thus can simulate) more processes. We show that this re-
lation is inherent by giving an impossibility result relating graph
expansion and fault tolerance.

We next turn our attention to the (eventual) leader election prob-
lem. This problem is traditionally considered in message-passing
systems, and much effort has been devoted to find the weakest
synchrony needed to solve it [5, 6, 38]. Prior algorithms required
some timeliness on processes and communication links. We show
that in the m&m model, we can do better by using both shared
memory and message passing to obtain different benefits. We use
shared memory to reduce the timeliness requirement to processes
only: our leader election algorithms require only that a single pro-
cess, the leader, increments its local heartbeat in a timely fashion;
other processes can be asynchronous—in particular, they can be
arbitrarily slow to read the heartbeat. We use message passing to
provide a trade-off between message reliability and amount of work
in steady state: we give two algorithms for different types of links.
(1) With reliable links1, the only steady-state work is that the leader
periodically increments a local heartbeat counter in shared memory,
while other processes read the counter; (2) With fair lossy links2,
in addition to the above, the leader also periodically reads a shared
register. In either algorithm, no messages are exchanged in the
steady state, and all the communication links can be asynchronous.
We further prove that the two leader election algorithms are opti-
mal in the following sense. For systems with a timely process and
asynchronous links, any algorithm requires the leader to write a
shared register periodically (as in both our algorithms). This result
holds whether links are reliable or fair lossy. Moreover, with fair
lossy links, there are more requirements: either the leader writes
and reads shared registers periodically (as our second algorithm),
or some process keeps sending messages forever.

To summarize, the contributions of this paper are the following:
• We motivate and introduce the m&m model of distributed
computing, which allows processes to both share memory
and pass messages.
• We study the consensus problem under the m&m model. We
give a new algorithm that improves on the fault tolerance of
message-passing algorithms, while limiting memory sharing
to allow for scalability. We show that the algorithm’s fault
tolerance is improved by a shared-memory graph with high
expansion, and prove an impossibility result showing that
this relationship to expansion is inherent.
• The new consensus algorithm introduces a simulation tech-
nique that combines shared memory and message passing.
We believe this technique is interesting in its own right,
as it could be used to improve other algorithms, to show
impossibility results, etc.
• We study the leader election problem under the m&m model
and give algorithms that reduce the synchrony required,
while maintaining a low communication complexity. We
show that these algorithms are tight in their communication.

1I.e., links that do not drop messages.
2I.e., links that can drop messages, but if a message is repeatedly sent then it is
eventually received.

While we focus on two problems and some benefits of the m&m
model, we believe the paper opens a large space for future research
on other problems and benefits.

Due to space limitations, we omit proofs and some details. They
will be included in the full version of this paper.

2 RELATEDWORK
The m&m model is motivated by emerging technologies, such as
Remote Direct Memory Access (rdma) [39, 41, 65], disaggregated
memory [31, 55], Gen-Z [33], and OmniPath [40]. These technolo-
gies provide remote memory [4] and can be unified under higher-
level abstractions [3]. rdma permits a process to access the memory
of a remote host without interrupting the remote processor. It has
been widely used in high-performance computing [72] and is now
being adopted in modern data centers [34]. Work on rdma shows
how it can improve the performance of important applications, such
as key-value storage systems [28, 43, 60], database systems [13, 73],
distributed file systems [58], and more [29, 36, 67, 68]. Recent work
uses rdma to improve performance of consensus [64, 70] assum-
ing a majority of processes are correct. Disaggregated memory
separates compute and memory, and connects them using a fast
network; prior work proposes new architectures for disaggregated
memory [9, 22, 62] and studies the network [35] and system [4, 56]
requirements for a practical implementation. Gen-Z and OmniPath
are commercial technologies under development that offer memory
semantics and low-latency access to remote data.

The shared-memory and the message-passing models are well
studied in academic research, and have been compared under both
theoretical and practical considerations [17, 18, 49, 54]. The two
models have been shown to be computationally equivalent [11],
though for efficiency, simplicity, or hardware availability, one might
prefer one model over the other. For instance, Barrelfish [14] uses
message passing to improve performance on a shared-memory
multicore machine [24]. Conversely, distributed shared-memory
systems [8, 16, 66] offer the abstraction of shared memory on top
of a message-passing system. Recent work improves the perfor-
mance of such systems using rdma [45, 61]. Integrating message
passing and shared memory in hardware has been explored in the
MIT Alewife machine [50]. Our work differs in that (1) we propose
a new abstract distributed computing model, which encapsulates
low-latency remote access technologies, such as rdma and disag-
gregated memory, and (2) we show that this model can improve the
robustness of algorithms, rather than the performance or simplicity
of applications.

Consensus is a fundamental problem in distributed computing.
Following the well-known FLP result [32] showing that it cannot
be solved in an asynchronous crash-prone message-passing system,
much work has focused on getting around the impossibility by
using randomization [10, 12, 15], partial synchrony [27, 30], or
unreliable failure detectors [19, 20]. In fact, the eventual leader
election problem, Ω, is the weakest failure detector that can solve
consensus, and is used in several algorithms [53, 63]. This is the
problem that we study in the second part of the paper. The eventual
leader election problem is known to require some synchrony to
implement. We show that the m&m model permits solutions with
less synchrony than before, while minimizing the work done.

p

q

r

s

t

Sp = {p,q}
Sq = {p,q, r }
Sr = {q, r , s, t}

Ss = {r , s, t}
St = {r , s, t}

S = {Sp , Sq , Sr , Ss , St }
= {{p,q}, {p,q, r }, {q, r , s, t}, {r , s, t}}

Figure 1: Example of a shared-memory graphGSM and the resulting shared-
memory domain S, where p, q, r, s, t are processes. This shared-memory
graph permits registers that can be shared among any of the Sx sets in S.
The graph is intended to model the underlying physical connections that
implement the shared memory. For example, a register shared among Sr
is physically kept in the host containing process r , and processes q, s, t
access this register over the connections to r in the graph, while process p
cannot access this register.

Expander graphs are graphs that are sparse, yet well-connected.
They are well-studied and have applications in many areas of com-
puter science, including distributed computing [21, 71]. In this
paper, we show that the fault tolerance of the m&mmodel is tightly
coupled with the expansion of its shared-memory connections,
highlighting another problem in which expander graphs apply.

3 MODEL
We consider a distributed systemwithn processesΠ = {0, . . . ,n−1}
that can communicate with each other using message passing and
shared memory. Processes may fail by crashing, in which case they
stop taking steps. If a process does not fail, it is said to be correct
and it keeps taking steps forever. Some algorithms require a bound
on the maximum number of processes that can crash; we denote
this bound by f . A process has a local state that is private to itself,
and it may communicate with others through message passing and
shared memory.

Message passing. Processes can send messages over directed links.
The link from p to q, denoted p → q, is an output link of p and an
input link of q. Each link p → q satisfies the following property in
every run:
• [Integrity]: If q receivesm from p k times then p previously
sentm to q at least k times.

Some links may satisfy additional properties which are described
next. We consider two types of links: reliable and fair lossy. Roughly,
a reliable link does not drop messages, while a fair lossy link may
drop messages but ensures that if a process sends a message repeat-
edly then it is eventually received.

More precisely, we say that a link p → q is reliable if it satisfies
Integrity and the following property:
• [No loss]: If p sends a messagem to q and q is correct then
eventually q receivesm from p.

We say that a link p → q is fair lossy if it satisfies Integrity and
the following property:
• [Fair loss]: If p sends a messagem infinitely often to q and q
is correct, then q receivesm infinitely often from p.

In this paper, we consider a fully connected network, that is, for
any two processes p , q, there is a link from p to q.

Shared memory. Processes can also communicate via a set of
shared registers. Here, we consider only atomic read-write registers.

In practice, a shared register is provided by the hardware, but not all
processes may be able to access all registers, as there may be limits
on the number of processes that can share the same memory [28,
43, 44, 69]. We define the shared-memory domain S as a set of
process subsets; intuitively, S determines what subsets of processes
can share memory. More precisely, for each set S ∈ S, the model
permits having any number of registers shared among processes
in S . In general, S can be arbitrary. However, in practice memory
sharing is simpler, as the hardware technology naturally imposes
a structure on S: for example, a process might be able to share
memory only with processes that connect to it over the underlying
hardware. We say that S is uniform if it can be represented by
an undirected graph GSM of processes, such that registers can be
shared by a process and its neighbors inGSM; intuitively,GSM is the
graph of connections of the underlying hardware that implements
the shared memory. Formally, GSM is a graph GSM = (Π,ESM) and
the sets in S are exactly the sets consisting of a process p and its
neighbors in GSM. That is, if we let Sp = {p} ∪ {q : (p,q) ∈ ESM}
then S = {Sp : p ∈ Π}. For a uniform S, we say that GSM is its
shared-memory graph. Figure 1 gives an example. In this paper, we
are interested in the uniform model, and all our results work with
the graphGSM. The broader model based on S is provided to allow
for future theoretical work and potential new hardware platforms.
Note that, while the model does not constrain the number or size
of registers that can be shared, algorithms may choose to reduce
their shared-memory usage for efficiency.

In systems with few processes (e.g., in the tens), GSM could be a
fully connected graph, but systems with lots of processes may have
to limit the maximum degree of GSM (e.g., limit the connections
over the hardware).

We assume that the shared memory does not fail, as in the pure
shared-memory model. This assumption can be supported by the
hardware: with rdma, the shared memory can be registered with
the kernel so that it remains accessible after processes crash; dis-
aggregated memory can similarly preserve memory accesses after
process crashes.

Synchrony. For some results, we make some partial synchrony
assumptions about the relative execution speed of processes. We
first define what it means for a process p to be timely with respect
to another process q:
• [Pairwise timeliness]: We say that p is q-timely (in a run) if p
is correct and there is an integer i≥1 such that every time
interval containing i steps of q has at least one step of p.

The timeliness bound i above is not known to processes: it may
depend on each run and each pair of processes p and q. We now
define what it means for a process p to be timely:
• [Timeliness]:We say that p is timely (in a run) if p is q-timely
for every process q ∈ Π (in this run).

Intuitively, timeliness means that eventually the process executes
within a bounded rate relative to other processes. This is a weak
requirement in many ways. First, it is relative to the speed of other
processes, so a process can be timely even if it slows down arbitrarily
in real time. Second, the bound on execution rate need not be known.
Third, the bound is arbitrary and not fixed a priori, so timeliness
can be satisfied even if a process is initially arbitrarily slow relative
to others.

We consider two types of systems: (1) asynchronous systems,
which might not have any timely processes, and (2) systems with lit-
tle synchrony, that is, systems where at least one process is timely;
this process can vary from run to run and is not known to the pro-
cesses. We make no assumptions about the timeliness of messages.

Consensus problem. In the consensus problem, each process be-
gins with an input value v ∈ {0, 1} which it proposes, and it decides
on an output value in the end. The output values must satisfy three
properties:
• [Uniform Agreement]: No two processes decide on a different
value.
• [Validity]: If a process decides on a value v then v was pro-
posed by some process.
• [Termination]: Every correct process eventually decides.

We allow randomized solutions, where the above Termination
property must hold with probability 1 under a strong adversary—
one that can schedule processes based on their current state and
past history.

A consensus object is a shared-memory object with one operation,
propose(v), which takes a value v and returns the first value that
was proposed to the object.

The eventual leader election problem. This problem is formally
defined in [20] as the Ω failure detector. Informally, each process p
outputs a single process denoted leaderp , such that the following
property holds:3

• There is a correct process ℓ and a time after which, for every
correct process p, leaderp = ℓ.

Note that, at any given time, processes do not know if there is
a commonly agreed leader; they only know that eventually there
will be a common leader.

4 CONSENSUS
We show that the m&m model can be used improve the fault toler-
ance of algorithms compared to a pure message-passing system. It
is known that consensus cannot be solved deterministically in an
asynchronous system subject to failures, even if processes can only
fail by crashing and at most one process may fail; this is true in both
message-passing and shared-memory models [32, 57]. We thus con-
sider asynchronous systems where processes can toss coins. Then,
in a shared-memory system, consensus can be solved (with probabil-
ity 1) with up to n−1 crash failures [1] (n is the number of processes
in the system), whereas in a message-passing system, a consensus
algorithm can tolerate at most ⌊(n − 1)/2⌋ crash failures [15]. We
show that the m&m model can strike a balance between shared
memory and message passing.

First note that if the shared-memory graph GSM is fully con-
nected then any fault-tolerant shared-memory algorithm alsoworks
in the m&m model—the algorithm simply never sends messages.
Thus, there are algorithms in the m&m model that can tolerate up
to n−1 crash failures. However, in a large system, it is impractical
to connect all processes over shared memory (§3). When fewer

3Henceforth, when we say that there is a time after which some property C holds,
we mean that there is a time t such that, for every time t ′ ≥ t , property C holds at
time t ′.

processes can share memory, we show that the m&m model pro-
vides a range of choices, where the fault tolerance increases as
we improve the shared-memory graph. Specifically, we present an
algorithm for the m&m model that tolerates anywhere between
⌊(n − 1)/2⌋ and n−1 crash failures, depending on the topology of
the shared-memory graph (§4.1). We discuss how to best choose
this topology (§4.2), building on expander graphs [37]. We then
give an impossibility result about the fault tolerance of consensus
in the m&m model (§4.3).

4.1 Algorithm
The algorithm for the m&mmodel is based on Ben-Or’s randomized
algorithm [15], which can tolerate up to f < n/2 process crashes in
the message-passing model. This is one of the simplest consensus
algorithms, but not the most efficient one. Our goal here is to show
feasibility; designing more efficient algorithms for the m&m model
is future work.

Ben-Or’s algorithm. In Ben-Or’s algorithm, each process has an
estimate of the decision value, which starts with the process’s initial
value. The algorithm proceeds in rounds, each with two phases. In
the first phase (phase R), each process p sends its current estimate
to all processes, waits to receive at least n−f messages, and checks
if more than n/2 messages have the same value v . If so, p sends this
value to all processes in the second phase (phase P). Otherwise, p
sends a special value ‘?’ to all processes in the second phase. Process
p then waits to receive at least n−f messages. If at least f +1 of
them have the same non-‘?’ value, p decides on this value. If at least
one of them is a non-‘?’ value, p changes its estimate to that value.
Otherwise, p changes its estimate to a random bit.

Ben-Or’s algorithm satisfies the validity and uniform agreement
properties of consensus (§3), and it satisfies the termination prop-
erty with probability 1 if a majority of the processes are correct [7].

Simulating Ben-Or’s algorithm in the m&mmodel.We mod-
ify Ben-Or’s algorithm, so that correct processes simulate the ac-
tions of their neighbors in the shared-memory graph GSM. The
idea of the simulation is simple: when sending a message in any
phase, process p sends not only its own value, but also the value
that its neighbors are supposed to send. That is, p ensures that
its neighbors progress at least as much as it does. To do so, for
each neighbor q, p reaches agreement with q and q’s neighbors
on what q’s message should be. Then, p sends a message of the
form (phase, round, [⟨q, val⟩ : q ∈ neighbors(p)]), where phase is a
phase (either R or P), round is a round number, and the last entry
is an array with a tuple for each neighbor q indicating the agreed
value of q’s message. We say that the message represents each of the
processes whose ids appear in the tuple. For a set of such messages,
we say that the messages represent the union of the processes that
are represented by each message separately.

To reach agreement on the message of a neighbor q, there are
two arrays of consensus objects, one array for each phase, indexed
by q and the round. All of q’s neighbors use the same consensus
object to determine what q’s message might be for a given phase
and round. Process q and its neighbors propose their own value
to that consensus object. The consensus objects themselves are
implemented using known wait-free randomized shared-memory

Shared objects:

RVals[p, i]: consensus object accessible by {p } ∪ neighbors(p),
∀p ∈ Π, ∀i ∈ {1, 2, . . . }

PVals[p, i]: consensus object accessible by {p } ∪ neighbors(p),
∀p ∈ Π, ∀i ∈ {1, 2, . . . }

Code for process p :
procedure Consensus(vp)
message← []
k ← 1
for q ∈ {p } ∪ neighbors(p) do
message[q] ← ⟨q, RVals[q, k].propose(vp)⟩

while true
send (R, k, message) to all
wait for messages of the form (R, k, ∗) representing more than

n/2 processes
if received more than n/2 tuples with different ids and

and the same value v
then for q ∈ {p } ∪ neighbors(p) do

message[q] ← ⟨q, PVals[q, k].propose(v)⟩
else for q ∈ {p } ∪ neighbors(p) do

message[q] ← ⟨q, PVals[q, k].propose(?)⟩

send (P, k, message) to all
wait for messages of the form (P, k, ∗) representing more than

n/2 processes
if received more than n/2 tuples with different ids and

the same value v , ?
then decide(v)
k ← k + 1
if at least one tuple has value v , ?
then for q ∈ {p } ∪ neighbors(p) do

message[q] ← ⟨q, RVals[q, k].propose(v)⟩
else for q ∈ {p } ∪ neighbors(p) do

v ← 0 or 1 randomly
message[q] ← ⟨q, RVals[q, k].propose(v)⟩

Figure 2: Hybrid Ben-Or (HBO) consensus algorithm.

algorithms [10, 12], which work in the m&m model because neigh-
bors in GSM share memory.

We call this algorithm the Hybrid Ben-Or or HBO algorithm.
Figure 2 shows the pseudocode. There, processes do not terminate
after deciding, but it is easy to modify the algorithm so that they do.
This algorithm always satisfies the safety properties of consensus,
irrespective of the number of crash failures:

Theorem 4.1. The HBO algorithm in Figure 2 satisfies the Validity
and Uniform Agreement properties of consensus in the m&m model
with reliable links.

The proof of this theorem is given in the full paper. There, we
also show that the HBO algorithm terminates as long as a majority
of the processes are represented.

Theorem 4.2. The HBO algorithm in Figure 2 satisfies the Termi-
nation property of consensus with probability 1 in the m&m model
with reliable links where a majority of the processes are represented.

In the next section, we consider how many failures may occur
while still ensuring that a majority of processes are represented.

4.2 Shared-memory expanders
In this section, we consider the fault tolerance of the HBO algo-
rithm: how many crash failures can it tolerate while ensuring that

processes decide. In the algorithm, correct processes represent their
neighbors in GSM, so the fault tolerance depends on GSM and how
many neighbors correct processes have. We show that, by choosing
GSM to be a graph with high expansion, we obtain the best trade-off
between maintaining low degree and achieving high fault tolerance.
Having a low degree is important because the degree indicates
the number of connections that a process must have to establish a
shared memory, and that number is limited by the hardware (§3).

Roughly, expander graphs are graphs with the property that
every sufficiently small set of vertices has many neighbors. To
define these graphs more precisely, we follow the survey by Hoory,
Linial and Wigderson [37]; we refer the reader to this survey for a
detailed treatment.

Definition 1. Let G = (V ,E) be an undirected graph.
1. The vertex boundary of a set S ⊆ V is

δS = { u ∈ V : {u,v} ∈ E,v ∈ S } \ S .

2. The vertex expansion ratio of G, denoted h(G), is defined as

h(G) = min
S ⊆V : |S | ≤ |V |/2

|δS |

|S |

Intuitively, the higher the vertex expansion ratio, the larger the
vertex boundary and the better connected the graph.

To apply this definition to the fault tolerance of HBO, consider a
system with shared-memory graphGSM and vertex expansion ratio
h(GSM), where up to f processes may crash. The set of vertices
of interest to us is the set C of correct processes. If C has many
neighbors, then it can simulate many extra processes in HBO. The
adversary may pick any set of at least n − f processes to be correct;
regardless of the set it picks, that set has a vertex boundary of at
least (n−f) · h(GSM).

The fault tolerance of HBO improves with the vertex expansion
ratio of the graph. This is made precise by the following:

Theorem 4.3. Consider the m&m model with shared-memory
graph GSM where links are reliable and f processes may crash. The
HBO algorithm in Figure 2 satisfies the Termination property of con-
sensus with probability 1 if f < (1 − 1

2(1+h(GSM))
) · n.

Proof. Recall that Ben-Or’s algorithm requires that f < n/2 for
termination. The HBO algorithm simulates the correct processes
and the processes in their vertex boundary. GivenGSM has vertex
expansion ratio h(GSM), the number of processes simulated by the
algorithm is at least (n−f) · (1+h(GSM)). Rearranging the terms
leads to the theorem. □

In the full paper, we give an example of graphs we can use,
by discussing a construction of a family of expander graphs and
showing their expansion ratio h(G).

4.3 Impossibility result
We now show an impossibility result about the fault tolerance
of consensus in the m&m model. The impossibility depends on
the topology of the shared-memory graph GSM. Intuitively, the
impossibility indicates that the expander construction is the correct
approach: we show that the fault tolerance of the system is related
to the minimum cut that separates a large subgraph from the rest of

theGSM graph. In graphs with high expansion, the size of such a cut
it guaranteed to be large, and thus many failures can be tolerated.

To establish the impossibility, we extend the well-known parti-
tioning argument [59] to the m&mmodel. Basically, if two processes
cannot communicate during the execution of an algorithm, then
they cannot decide the same value. Thus, if the adversary can par-
tition the system into two disjoint subgraphs A and B, each of
size ≥ n − f , where processes in A do not communicate with pro-
cesses in B, then agreement cannot hold. This argument works
in message-passing models, where the adversary can arbitrarily
delay messages on the network, but it breaks in a shared-memory
model, in which communication between processes cannot be de-
layed without blocking the processes themselves. Thus, in the m&m
model, to create such a partition the adversary must get rid of all
shared-memory edges of GSM on the cut between A and B.

We now formalize the intuition to arrive at the impossibility.
Given a graph G = (V ,E), we say that C = (B, S,T) is an SM-cut in
G if B, S, and T are disjoint subsets of V such that B ∪ S ∪T = V ,
and there is a way to partition B into two disjoint subsets B1 and
B2 such that (B1 ∪ S,B2 ∪T) is a cut of the graph G, and for every
b1 ∈ B1, b2 ∈ B2, s ∈ S and t ∈ T , {s, t} < E, {b1, t} < E, and
{b2, s} < E. Intuitively, B is the set of vertices on the boundary of
the cut, and S and T are the remaining vertices on each side.

Theorem 4.4. Consider the m&m model with shared-memory
graph GSM, where links are reliable and f processes may crash. Con-
sensus cannot be solved ifGSM has an SM-cut (B, S,T)with |S | ≥ n−f
and |T | ≥ n−f .

We prove this theorem in the full paper. Note that, in a graph
with high expansion, there are no SM-cuts (B, S,T) with |S | ≥ n−f
and |T | ≥ n−f . Intuitively, this is because if we want to build an
SM-cut and we start with some set S with |S | ≥ n − f , we must
include δS in B1, and then include δ (S ∪ B1) in B2. As these sets
expand quickly, we are then left with fewer than n − f vertices to
put inT . In the full paper, we formalize the above intuition to relate
the impossibility to the expansion properties of GSM.

5 LEADER ELECTION
We now show that the m&m model allows us to not only improve
the fault tolerance of message-passing systems, but also to reduce
the synchrony needed to solve certain problems. To demonstrate
that, we turn our attention to the (eventual) leader election problem.
In this problem, each process has a leader, and the goal is for all
correct processes to eventually have the same correct leader (this is
also known as the Ω failure detector [19]). Leader election is used
in several well-known consensus algorithms, such as Paxos [52],
Raft [63], and CT [20]. To be solvable, leader election requires the
system to have some partial synchrony (because it can be used
to solve consensus, and consensus is impossible in asynchronous
systems [32]). Finding the weakest models of synchrony for solving
this problem was the goal of several papers, but all known leader
election algorithms for message-passing systems require some syn-
chrony on at least some of the network communication links. In
practice, it can be hard to guarantee small bounds on network
delays, thus leading to high recovery time when a leader crashes.

We show that the m&m model permits solutions with almost no
synchrony: the only requirement is that some process be timely. We

give two algorithms: one assumes reliable links (§5.1), and the other
relaxes that requirement and assumes only fair lossy links (§5.2).
In both algorithms, the leader regularly increments a heartbeat
counter in shared memory, and other processes verify that the
leader is alive by monitoring and timing out on this counter. With
fair lossy links, the leader in addition periodically reads a register.
We can make it easier for the leader to be timely, by placing the
shared registers so that eventually the leader accesses only local
registers (§5.3). We show that our algorithms are tight in efficiency
(§5.4). In this section, we assume that GSM is the complete graph.

5.1 Algorithm for reliable links
The basic idea of the first algorithm is that each process p has a
“badness” counter that it shareswith other processes. Intuitively, this
badness counter represents the number of times that other processes
suspected p of having crashed. To pick its leader, p keeps a set of
processes, called contenders, that are contending for leadership; this
set always includes p and initially contains no other processes. If
there are no other contenders, p picks itself as the leader; otherwise,
it picks the process with the smallest badness counter. Note that
at this point, different processes could pick different leaders. We
show that our algorithm always eventually realizes and corrects
such situations.

When p becomes its own leader, it announces its leadership to
other processes using a notification mechanism; here, this mecha-
nism simply sends a message to the other processes (in our next
algorithm, the mechanism is more complex because messages can
be lost). If p thinks it is the leader, it sets an active bit in shared
memory to indicate that it believes itself to be the leader. Then, it
periodically increments a heartbeat counter in shared memory to
tell others that it is alive. Process p also periodically checks whether
it got any notifications from another process q; if it did, this means
that q also wants to be the leader. So, p adds q to the contenders
set, and p starts a timer on q; in effect, p now monitors q to see if it
remains timely. Lastly, upon adding q to its contenders set, p also
notifies q that p is also a contender, in case q does not know.

Whether p is a leader or not, p monitors the processes in its
contender set other than itself. Intuitively, p expects each contender
q,p to periodically increment q’s heartbeat counters in shared
memory. If q fails to do so within a timeout,4 p removes q from its
contenders set; p then checks whether q has the active bit set in
shared memory; if it does, that means q thinks it is the leader, so p
sends an accusation to q and increments the timeout value. While p
is its own leader, it also checks whether it received any accusation
messages. If p receives an accusation, it increments its badness
counter. If p stops thinking it is the leader, it clears the active bit in
shared memory. The active bit is critical for correctness; it prevents
processes from sending an accusation to p after it relinquishes
leadership and stops incrementing its heartbeat.

Processes who believe themselves to be the leader fight among
themselves for leadership: as described above, they notify each
other about their desire to be the leader, adding each other to
their contender set, and they pick the contending process with the

4In the code, p checks the timer of all processes for expiration, but it is easy to see
that only processes in p’s contender set have an ongoing timer at p .

smallest badness counter as the winning leader. We now explain
how all correct processes eventually choose the same leader forever.

First note that every timely process eventually stops being ac-
cused (because it increases its heartbeat in a timely fashion when
it thinks it is the leader, and it clears its active bit when it thinks
it is not the leader). By assumption, the system has at least one
timely process, thus there is at least one correct process that stops
receiving accusations, and so its badness counter stops growing.
Let ℓ be such a correct process whose badness counter is smallest.
Therefore, for every process q , ℓ: either q has a badness counter
that eventually grows larger than ℓ’s badness counter, or q crashes
(and so every correct process eventually times out on q and removes
q from its contender set). Since the contender set of ℓ contains ℓ
forever, it is clear that ℓ eventually selects itself as the leader forever.
When ℓ becomes leader, it notifies all the correct processes. Eventu-
ally other processes stop thinking they are leader: if a process q , ℓ
thought it were leader infinitely often, it would check notifications
infinitely often and eventually get a notification from ℓ, add ℓ to its
contender set, see that ℓ has a smaller badness counter, and then
pick ℓ rather than itself as its leader. This implies that every correct
process eventually selects ℓ as a leader forever.

This algorithm performs little work in steady state, as eventually
the following happens: (1) processes stop sending notifications
because they do so only when they become a leader or when they
are leader and receive a notification; (2) processes stop sending
accusations, because eventually ℓ is their only contender (other
than themselves), and no process times out on ℓ; (3) ℓ is the only
process who writes to a shared register, because only a process who
thinks it is the leader does so; (4) ℓ does not read any shared register,
because processes stop sending notifications; (5) processes p , ℓ
read only the shared register written by ℓ, because ℓ is their only
contender. Also note that each shared register in this algorithm is
written only by a single process (single-writer multi-reader shared
register).

Figures 3 and 4 show the detailed algorithm. In the text below,
when necessary for clarity, we use subscripts on a local variable to
denote its process, and possibly superscripts to denote a time (e.g.,
statep is state variable of p, while statetp is the value of this variable
at time t).

Figure 4 shows the notification mechanism, which is very simple
in this case (where links are reliable): the Notify(q) procedure just
sends a notification message to q, while the Get_Notifications()
procedure returns the processes from which p got a notification
message since the last invocation. Figure 3 has the main pseudocode.
Each process p has a STATE[p] shared register, which is a triple with
p’s heartbeat counter, badness counter, and active bit. Process p
has a local variable statep [q] containing p’s local view of STATE[q].
Process p executes forever in a loop. In this loop, p first picks its
leader (line 9). Then p checks if it has just become the leader and,
if so, notifies others (lines 10–11). Next p checks if it has just lost
leadership and, if so, clears its active bit (lines 12–14). Next, if p is
the leader (line 15), it increments its heartbeat counter and sets the
active bit in shared memory (lines 16–18), and checks from whom it
received notifications (line 19). For each such process q, it adds q to

Shared objects:

1 STATE[p] ← (0, 0, false): register accessible by all, ∀p ∈ Π
{ fields (hb, counter, active) }

Variables of process p :

2 state[q] ← (0, 0, false), ∀q ∈ Π { local var with fields (hb, counter, active) }
3 hbtimeout[q] ← η + 1, ∀q ∈ Π \ {p }; hbtimer[q] ← off, ∀q ∈ Π \ {p }
4 notifiers← ∅; competitors← ∅

5 contenders← {p }
6 leader← ⊥

Code for each process p :

7 repeat forever

8 previous_leader← leader

9 leader← ℓ s.t.
(state[ℓ].counter, ℓ) = min{(state[q].counter, q) : q ∈ contenders}

10 if previous_leader , p and leader = p then { if p becomes leader }
11 for each q ∈ Π \ {p } do Notify(q) { p tells all others }
12 if previous_leader = p and leader , p then { if p loses its leadership }
13 state[p].active← false { p indicates it is not active }
14 STATE[p] ← state[p] { p updates its STATE shared variable }
15 if leader = p then { if p is leader }
16 state[p].hb← state[p].hb + 1 { p increments its heartbeat }
17 state[p].active← true { p indicates it is active }
18 STATE[p] ← state[p] { p updates its STATE shared variable }
19 competitors← Get_Notifications() { p checks if others are leaders }
20 for each q ∈ competitors do { for each q competing for leadership }
21 contenders← contenders ∪ {q } { p adds q to contenders }
22 hbtimer(q) ← hbtimeout[q] { p starts a timeout on q }
23 state[q] ← STATE[q] { p reads q’s STATE shared variable }
24 Notify(q) { p tells q that p is also competing for leadership }
25 if received Accusation do { if p accused }
26 state[p].counter← state[p].counter + 1 { inc accusation count }
27 STATE[p] ← state[p] { p updates its STATE shared variable }

28 for each q ∈ Π \ {p } do

29 if hbtimer(q) expired
30 previous_hb[q] ← state[q].hb { p records q’s previous heartbeat }
31 state[q] ← STATE[q] { p reads q’s STATE shared variable }
32 current_hb[q] ← state[q].hb { p records q’s current heartbeat }
33 if current_hb[q] > previous_hb[q] then { if q’s heartbeat grew }
34 hbtimer(q) ← hbtimeout[q] { p restarts a timeout on q }
35 else
36 contenders← contenders − {q } { p removes q from contenders }
37 if state[q].active then { if q active }
38 send accusation to q { p accuses q }
39 hbtimeout[q] ← hbtimeout[q] + 1 { p increments q’s timeout }

Figure 3: Leader election algorithm.

1 procedure Notify(q) { send notify to q }
2 procedure Get_Notifications() {
3 notifiers← {q ∈ Π \ {p } : received new notify message from q }
4 return notifiers }

Figure 4: Notification mechanism (reliable links).

Shared objects:

1 NOTIFICATIONS[p] ← false { register written by all, read by p }
2 for each q ∈ Π do NOTIFIES[p][q] ← false

{ register written by all, read by p }

Code for each process p :

3 procedure Notify(q)
4 NOTIFIES[q][p] ← true { tell q that it was notified by p }
5 NOTIFICATIONS[q] ← true { tell q that it was notified }
6 return

7 procedure Get_Notifications()
8 notifiers← ∅
9 if NOTIFICATIONS[p] = true then do { if someone notified p then }
10 NOTIFICATIONS[p] ← false { p resets its notifications flag }
11 for each q ∈ Π \ {p } do { p checks who notified it }
12 if NOTIFIES[p][q] = true then do { if p was notified by q then }
13 NOTIFIES[p][q] ← false { p resets the notification flag set by q }
14 notifiers← notifiers ∪ {q } { add q to its notifiers set }
15 return notifiers

Figure 5: Notification mechanism (fair lossy links).

contenders, starts a timer on q,5 reads STATE[q], and notifies q that
it is also a leader contender (lines 20–24). Then p checks whether
it received accusations and, if so, increments its badness counter
(lines 25–27).

Next, whether p is leader or not, it checks whether the timer
on each process q,p has expired (lines 28–29). If it has, p checks
whether q’s heartbeat increased since p started the timer (lines 30–
33). If so, p restarts the timer (line 34). Otherwise, p removes q
from its contender set; if q is active, p sends an accusation to q and
increments its timeout value (lines 35–39).

Theorem 5.1. The algorithm in Figures 3 and 4 solves the eventual
leader election problem in the m&m model where links are reliable
and at least one process is timely. Eventually, no messages are sent,
and the only accesses to shared memory is that the leader periodically
writes a shared register and other processes periodically read this
register.

The proof is in the full paper.

5.2 Algorithm for fair lossy links
We now present an algorithm that works with fair lossy links. This
algorithm has an added cost: the leader not only keeps writing a
shared register, but also keeps reading a shared register. This cost
is necessary, as we see later (§5.4).

The algorithm is similar to the previous one, except that it uses
a different notification mechanism. Instead of sending a message,
a process p notifies q by setting a bit in a NOTIFIES[q][p] matrix
in shared memory; p also sets a bit in a NOTIFICATIONS[q] vector;
this is an optimization so that q can monitor just one bit instead
of a row of the matrix. More precisely, to know whether p has any
notifications, p first examines the NOTIFICATIONS[p] bit; if it is

5The timer is a local variable with a counter that is decremented at each step of p (this
is not shown in the code for clarity), until it reaches 0 (it “expires”).

clear, it need not check anything else; otherwise, it examines the
row NOTIFIES[p][−] of the matrix to find out which process sent
the notification. Figure 5 has the detailed code. By combining it
with in Figure 3, we obtain the leader election algorithm.

Theorem 5.2. The algorithm in Figures 3 and 5 solves the eventual
leader election problem in the m&m model where links are fair lossy
and at least one process is timely. Eventually, no messages are sent,
and the only accesses to shared memory is that the leader periodically
writes a shared register and periodically reads a shared register, and
other processes periodically read a shared register.

5.3 Locality
Our leader election algorithms are also efficient in terms of the
locality, where each register is local to some process. This model
corresponds well to the reality of an rdma network, in which each
process and each register are on some machine. In this case, if a
process p is on the same machine as some register r , we say that r
is local to p, and that p owns r . We say that the owner can read and
write the register locally, while others read and write remotely.

Both leader election algorithms ensure that eventually the leader
ℓ accesses registers only locally, by writing STATE[ℓ] (first algo-
rithm), or by writing STATE[ℓ] and readingNOTIFICATIONS[ℓ] (sec-
ond algorithm). This property further decreases the synchrony
needed in practice: recall that we require only one process to be
timely (the leader). By making the leader accesses local, the algo-
rithms make it easier for the leader to be timely, since its steps
involve only local accesses. On the other hand, the other processes
access shared registers remotely, which is slower, but they are not
required to be timely.

5.4 Impossibility result
In the full paper, we show that our algorithms are tight in the fol-
lowing sense. For systems with a timely process and asynchronous
links, the leader must write shared registers forever. This result
holds even if links are reliable and, a fortiori, if links are fair lossy.
If, however, links are fair lossy, there is an additional requirement:
either the leader writes and reads shared registers forever, or some
process keeps sending messages forever.

Theorem 5.3. Let A be any eventual leader election algorithm for
the m&m model with n ≥ 2 processes, where links are reliable and
at least one process is timely. There is a run of A whose leader writes
shared registers infinitely often.

Theorem 5.4. Let A be any eventual leader election algorithm for
the m&mmodel with n ≥ 3 processes, where links are fair lossy and at
least one process is timely. Either (1) there is a run of A whose leader
writes and reads shared registers infinitely often, or (2) there is a run
of A in which some process sends messages infinitely often.

6 CONCLUSION
The m&m model provides some inherent advantages over the pure
message-passing and shared-memory models. In this paper, we
demonstrated advantages in two aspects, fault tolerance and syn-
chrony, and we focused on two problems, consensus and leader
election. There are many exciting directions for future work in this
space: discovering other benefits of the m&m model, developing

better algorithms, studying other problems beyond consensus and
leader election, evaluating algorithms in practice, and considering
more failure models. On the last point, we addressed only process
crashes, but it would be interesting to consider Byzantine failures,
where the ability to pass messages and share registers selectively
could overcome the difficulties of dealing with Byzantine processes
in shared memory. Also interesting is to consider failures of the
shared memory, especially if only parts of the memory fails [2, 42].

REFERENCES
[1] K. Abrahamson. On achieving consensus using a shared memory. In ACM

Symposium on Principles of Distributed Computing, pages 291–302, Aug. 1988.
[2] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty

shared objects. Journal of the ACM, 42(6):1231–1274, Nov. 1995.
[3] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. Novakovic, A. Ra-

manathan, P. Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and
M. Wei. Remote regions: a simple abstraction for remote memory. In USENIX
Annual Technical Conference, July 2018.

[4] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P. Subrahmanyam,
L. Suresh, K. Tati, R. Venkatasubramanian, and M. Wei. Remote memory in the
age of fast networks. In ACM Symposium on Cloud Computing, pages 121–127,
Sept. 2017.

[5] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-
efficient leader election and consensus with limited link synchrony. In ACM
Symposium on Principles of Distributed Computing, pages 328–337, July 2004.

[6] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing
Omega in systems with weak reliability and synchrony assumptions. Distributed
Computing, 21(4):239–314, Oct. 2008.

[7] M. K. Aguilera and S. Toueg. The correctness proof of Ben-Or’s randomized
consensus algorithm. Distributed Computing, 25(5):371–381, Oct. 2012.

[8] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared memory computing on networks of work-
stations. IEEE Computer, 29(2):18–28, Feb. 1996.

[9] K. Asanovic and D. Patterson. FireBox: A hardware building block for 2020
warehouse-scale computers. In Keynote of USENIX Conference on File and Storage
Technologies, Feb. 2014.

[10] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.
Journal of algorithms, 11(3):441–461, Sept. 1990.

[11] H. Attiya, A. Bar-Noy, and D. Dolev. Sharingmemory robustly inmessage-passing
systems. Journal of the ACM, 42(1):124–142, Jan. 1995.

[12] H. Attiya and K. Censor. Tight bounds for asynchronous randomized consensus.
Journal of the ACM, 55(5):20, Oct. 2008.

[13] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann. Rack-scale in-memory join
processing using RDMA. In International Conference on Management of Data,
pages 1463–1475, May 2015.

[14] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The multikernel: A new OS architecture for
scalable multicore systems. In ACM Symposium on Operating Systems Principles,
pages 29–44, Oct. 2009.

[15] M. Ben-Or. Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In ACM Symposium on Principles of Dis-
tributed Computing, pages 27–30, Aug. 1983.

[16] J. K. Bennett, J. B. Carter, andW. Zwaenepoel. Munin: Distributed shared memory
based on type-specific memory coherence. In ACM Symposium on Principles and
Practice of Parallel Programming, pages 168–176, Mar. 1990.

[17] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. Marathe, and M. Moir.
Message passing or shared memory: Evaluating the delegation abstraction for
multicores. In International Conference on Principles of Distributed Systems, pages
83–97, Dec. 2013.

[18] S. Chandra, J. R. Larus, and A. Rogers. Where is time spent in message-passing
and shared-memory programs? In International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 61–73, Oct.
1994.

[19] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, July 1996.

[20] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, Mar. 1996.

[21] C. Cooper, T. Radzik, N. Rivera, and T. Shiraga. Fast plurality consensus in
regular expanders. In International Symposium on Distributed Computing, pages

13:1–13:16, Oct. 2017.
[22] A. Daglis, D. Ustiugov, S. Novakovic, E. Bugnion, B. Falsafi, and B. Grot. SABRes:

Atomic object reads for in-memory rack-scale computing. In International Sym-
posium on Microarchitecture, pages 1–13, Oct. 2016.

[23] R. Danek and V. Hadzilacos. Local-spin group mutual exclusion algorithms. In
International Symposium on Distributed Computing, pages 71–85, Oct. 2004.

[24] T. David, R. Guerraoui, and M. Yabandeh. Consensus inside. In International
Middleware Conference, pages 145–156, Dec. 2014.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Symposium on Operating Systems Design and Implementation, pages
137–150, Dec. 2004.

[26] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
munications of the ACM, 8(9):569, Sept. 1965.

[27] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for
distributed consensus. Journal of the ACM, 34(1):77–97, Jan. 1987.

[28] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast remote
memory. In Symposium on Networked Systems Design and Implementation, pages
401–414, Apr. 2014.

[29] A. Dragojević, D. Narayanan, E. Nightingale, M. Renzelmann, A. Shamis,
A. Badam, and M. Castro. No compromises: distributed transactions with consis-
tency, availability, and performance. In ACM Symposium on Operating Systems
Principles, pages 54–70, Oct. 2015.

[30] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, Apr. 1988.

[31] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic. Beyond processor-centric
operating systems. In Workshop on Hot Topics in Operating Systems, pages 17–17,
May 2015.

[32] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[33] Gen-Z draft core specification—december 2016. http://genzconsortium.org/
draft-core-specification-december-2016.

[34] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn. RDMA over
commodity ethernet at scale. In ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pages
202–215, Aug. 2016.

[35] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker. Network support
for resource disaggregation in next-generation datacenters. In Workshop on Hot
Topics in Networks, pages 10:1–10:7, Nov. 2013.

[36] B. Holt, J. Nelson, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Flat
combining synchronized global data structures. In International Conference on
PGAS Programming Models, pages 76–92, Oct. 2013.

[37] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, Aug. 2006.

[38] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing the weakest system model
for implementing Ω and consensus. IEEE Transactions on Dependable and Secure
Computing, 6(4):269–281, Oct. 2009.

[39] InfiniBand. http://www.infinibandta.org/content/pages.php?pg=about us
infiniband.

[40] Intel Omni-Path. http://www.intel.com/content/www/us/en/high-
performance-computing-fabrics/omni-path-architecture-fabric-overview.
html.

[41] iWARP. https://en.wikipedia.org/wiki/IWARP.
[42] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects.

Journal of the ACM, 45(3):451–500, May 1998.
[43] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA efficiently for key-

value services. In ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages 295–306, Aug.
2014.

[44] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, scalable and simple
distributed transactions with two-sided (RDMA) datagram RPCs. In Symposium
on Operating Systems Design and Implementation, pages 185–201, Nov. 2016.

[45] S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros, and K. Sagonas. Turning cen-
tralized coherence and distributed critical-section execution on their head: A
new approach for scalable distributed shared memory. In IEEE International
Symposium on High Performance Distributed Computing, pages 3–14, June 2015.

[46] P. Keane and M. Moir. A simple local-spin group mutual exclusion algorithm.
IEEE Transactions on Parallel and Distributed Systems, 12(7):673–685, July 2001.

[47] Y.-J. Kim and J. H. Anderson. Adaptive mutual exclusion with local spinning. In
International Symposium on Distributed Computing, pages 29–43, Oct. 2000.

[48] Y.-J. Kim and J. H. Anderson. Timing-based mutual exclusion with local spinning.
In International Symposium on Distributed Computing, pages 30–44, Oct. 2003.

[49] A. C. Klaiber and H. M. Levy. A comparison of message passing and shared
memory architectures for data parallel programs. In International Symposium on
Computer Architecture, pages 94–105, Apr. 1994.

[50] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim. Integrating
message-passing and shared-memory: Early experience. In ACM Symposium on
Principles and Practice of Parallel Programming, pages 54–63, 1993.

[51] L. Lamport. On interprocess communication part I–II. Distributed Computing,
1(2):77–101, May 1986.

[52] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[53] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column), 32(4):51–58, Dec. 2001.

[54] T. LeBlanc and E. Markatos. Shared memory vs. message passing in shared-
memory multiprocessors. In IEEE Symposium on Parallel and Distributed Process-
ing, pages 254 – 263, Dec. 1992.

[55] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
Disaggregated memory for expansion and sharing in blade servers. In Interna-
tional Symposium on Computer Architecture, pages 267–278, June 2009.

[56] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F.
Wenisch. System-level implications of disaggregated memory. In IEEE Symposium
on High Performance Computer Architecture, pages 189–200, Feb. 2012.

[57] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, 4:163–183,
1987.

[58] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an RDMA-enabled distributed persistent
memory file system. In USENIX Annual Technical Conference, pages 773–785, July
2017.

[59] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[60] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads to build a fast,

CPU-efficient key-value store. In USENIX Annual Technical Conference, pages
103–114, June 2013.

[61] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin. Latency-
tolerant software distributed shared memory. In USENIX Annual Technical Con-
ference, pages 291–305, July 2015.

[62] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-out NUMA.
In International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, Mar. 2014.

[63] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm.
In USENIX Annual Technical Conference, pages 305–320, June 2014.

[64] M. Poke and T. Hoefler. DARE: High-performance state machine replication
on RDMA networks. In IEEE International Symposium on High Performance
Distributed Computing, pages 107–118, June 2015.

[65] RDMA over converged ethernet. https://en.wikipedia.org/wiki/RDMA over
Converged Ethernet.

[66] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low overhead,
software-only approach for supporting fine-grain sharedmemory. In International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 174–185, Oct. 1996.

[67] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and concurrent RDF queries with
rdma-based distributed graph exploration. In Symposium on Operating Systems
Design and Implementation, pages 317–332, Nov. 2016.

[68] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle. DaRPC: Data center RPC. In
ACM Symposium on Cloud Computing, pages 1–13, Nov. 2014.

[69] S.-Y. Tsai and Y. Zhang. LITE kernel RDMA support for datacenter applications.
In ACM Symposium on Operating Systems Principles, pages 306–324, Oct. 2017.

[70] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui. APUS: Fast and scalable PAXOS on
RDMA. In ACM Symposium on Cloud Computing, pages 94–107, Sept. 2017.

[71] U. Wijetunge, S. Perreau, and A. Pollok. Distributed stochastic routing opti-
mization using expander graph theory. In Australian Communications Theory
Workshop, pages 124–129, Jan. 2011.

[72] T. S. Woodall, G. M. Shipman, G. Bosilca, R. L. Graham, and A. B. Maccabe. High
performance RDMA protocols in HPC. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 13th European PVM/MPI User’s Group
Meeting, pages 76–85, Sept. 2006.

[73] E. Zamanian, C. Binnig, T. Kraska, and T. Harris. The end of a myth: Distributed
transactions can scale. Proceedings of the VLDB Endowment, 10(6):685–696, Feb.
2017.

http://genzconsortium.org/draft-core-specification-december-2016
http://genzconsortium.org/draft-core-specification-december-2016
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
http://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html
https://en.wikipedia.org/wiki/IWARP
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet

	Abstract
	1 Introduction
	2 Related work
	3 Model
	4 Consensus
	4.1 Algorithm
	4.2 Shared-memory expanders
	4.3 Impossibility result

	5 Leader election
	5.1 Algorithm for reliable links
	5.2 Algorithm for fair lossy links
	5.3 Locality
	5.4 Impossibility result

	6 Conclusion
	References

