The Mailbox Problem
(Extended Abstract)

Marcos K. Aguilerd, Eli Gafni*2, and Leslie Lampott

! Microsoft Research Silicon Valley
2 UCLA

Abstract. We propose and solve a synchronization problem calledrihidbox
problem motivated by the interaction between devices and procéssocom-
puter. In this problem, a postman delivers letters to thdboaiof a housewife
and uses a flag to signal a non-empty mailbox. The wife musovenall letters
delivered to the mailbox and should not walk to the mailboit i§ empty. We
present algorithms and an impossibility result for thishbean.

1 Introduction

Computers typically use interrupts to synchronize commation between a processor
and /O devices. When a device has a new request, it raisestemuipt line to get
the processor’s attention. The processor periodicallckhé the interrupt line has
been raised and, if so, it interrupts its current task and@es an interrupt handler to
process unhandled device requests. The interrupt lineeis ¢keared so that it can be
used when new requests come from the device. (This is a digtglification, since
there is typically an interrupt controller between the devand processor. In this case,
we consider the interrupt controller as the “device” thaeirupts the processor.) It
is imperative that the processor eventually execute therrimpt handler if there are
unhandled requests. Furthermore, it is desirable to aymigious interruptsin which
the processor executes the interrupt handler when there imhandled request. A
closely related problem occurs in multi-threaded programgrin which the processor
and the devices are separate threads and the interrupt éstgpenof software signal [8,
10].

In this paper, we study a theoretical synchronization mabihat arises from this
setting, which we call thenailbox problemFrom time to time, a postman (the device)
places letters (requests) for a housewife (the processarjriailbox by the streétThe
mailbox has a flag that the wife can see from her house. Shes labthe flag from
time to time and, depending on what she sees, may decide tthe mailbox to pick
up its contents, perhaps changing the position of the flag.wife and postman can
leave notes for one another at the mailbox. (The notes cdoeiaad from the house.)
We require a protocol to ensure that (i) the wife picks up gVetter placed in the
mailbox and (ii) the wife never goes to the mailbox when itigpgy (corresponding

% This problem originated long ago, when all mail was deliddsg men and only women stayed
at home.

to a spurious interrupt). The protocol cannot leave the wifthe postman stuck at the
mailbox, regardless of what the other does. For examplégifife and postman are
both at the mailbox when the postman decides to take a napjftheeed not remain at
the mailbox until the postman wakes up. We do not require ifetarreceive letters that
are still in the sleeping postman’s bag. However, we in&rpondition (i) to require

that she be able to receive mail left by the postman in previgsits to the mailbox

without waiting for him to wake up.

The following simple protocol was once used in computerse phstman/device
raises the flag after he delivers a letter/request; the pribeessor goes to the mailbox
if the flag is raised and lowers the flag after emptying the Inail It is easy to see that
this can cause a spurious interrupt if the postman goes tan#ibox while the flag
is still raised from a previous visit and falls asleep aftetting a letter in the box and
before raising the flag.

There are obviously no spurious interrupts with this protatthe postman can
deliver mail to the box and raise the flag in an indivisiblenaito action, while the
wife can remove mail from the box and lower the flag in an irglble atomic action.
Moreover, the problem is solvable if the wife and postman leave notes for one
another, and the reading or writing of a note and the raisirigwering of the flag can
be performed atomically. Here is a simple algorithm thasuseingle note written by
the postman and read by the wife. The postman stacks lettefslivery order in the
box. After delivering his letters, the postman as a singt®aavrites the total number
of letters he has delivered so far on his note and raises the\Waen she sees the
flag up, the wife as a single action lowers the flag and readpdkman’s note. Then,
starting from the bottom of the stack, the wife removes onlguggh letters so the total
number she has ever removed from the box equals the valueati®n the note.

What if a single atomic action can only either read or writeeror read or write a
flag? Then, we show that there are no algorithms that use wolybolean flags, one
writable by the wife and one by the postman. However, persapgwisingly, there is a
wait-free algorithm that uses two 14-valued flags, as we skiéavdo not know if there
is an algorithm that uses smaller flags.

The mailbox problem is an instance of a general class of problcalledounded-
signaling problemsWe give a general algorithm for any problem in this classe Th
algorithm is non-blocking but not wait-free. It is an opemlplem whether there are
general wait-free algorithms in this case.

The paper is organized as follows. We first define the maillsoklpm in Section 2.
In Section 3, we give a wait-free algorithm for the problern.db so, we first explain
the sussugprotocol in Section 3.1. We then give a non-blocking aldomntthat uses
flags with large timestamps in Section 3.2. We show how tog&tiese timestamps in
Section 3.3. We then explain how to change the non-blocKigrihm into a wait-free
algorithm in Section 3.4. In Section 4, we show that therenaraon-blocking (or wait-
free) algorithms that use only two Boolean flags. Next, wesater general bounded-
signaling problems in Section 5. We describe related workeation 6. Because of
space limitations, most proofs are omitted from the paper.

2 Problem definition

We now state the mailbox problem more precisely. For sintgliee let only one letter
at a time be delivered to or removed from the mailbox. It isydasturn a solution to
this problem into one in which multiple letters can be delkdeor removed.

We assume @ostmanprocess and wife process. There are three operations: the
postman’'sieliver operation, the wife'sheck operation, which returns a Boolean value,
and herremove operation. The postman can invoke thdiver operation at any time.
The wife can invoke theemove operation only if the last operation she invoked was
check and it returnedrRUE. We describe the execution of these operations in terms
of the mailbox metaphor—for example “checking the flag” nearecuting theheck
operation. Remember thadtliver andremove respectively delivers and removes only
a single letter.

Safety properties.We must implemendeliver, check, andremove so that in every
system execution in which the wife follows her protocol ofcking and obtaining
TRUE before removing, the following safety properties hold.

If the wife and postman never execute concurrently, thervahge returned by an
execution ofcheck is TRUEif and only if there are moréeliver thanremove executions
before this execution afheck. This is thesequential specification of safety

Neither the wife nor the postman can execute multiple omeratconcurrently, but
the wife can execute concurrently with the postman. Thewallde behaviors are spec-
ified by requiring that they act as if each operation were eteztatomically at some
point between its invocation and its completion—a condititmown as linearizability
[4].

Liveness properties.A process executes an operation by performing a sequence
of atomic steps. A solution should also satisfy a livenesgperty stating that, under
some hypothesis, a process’s operation executions caejgéetnow state two possible
liveness properties we can require of an algorithm. We nuithieetwo processes, letting
the wife be process 0 and the postman be process 1. Thusclopeacess number
the other process numberlis-i.

— (Non-blocking)For each, if process keeps taking steps when executing an oper-
ation, then either that operation execution completes acgssl —:; completes an
infinite number of operations.

— (Wait-free) For eachi, every operation execution begun by procésompletes
if 7 keeps taking steps—even if procedssi halts in the middle of an operation
execution [3]. The algorithm is said to t®unded wait-fre¢3] or loop-free[6]
if each operation completes before the process executhwgsitakenV steps, for
some fixed constany .

Process communication and stateA solution requires the two processes to com-
municate and maintain state. For that, processesstared variablesWe assume that
there are two shared variabldgug and Notes. It is desirable thatlag assume only a
small number of values, buotes can assume infinitely many values.

Operationcheck should be efficient: its execution should access a small atafu
persistent state. We consider two alternative intergoetaf this requirement:

— (Weak access restrictiorperationcheck accesses at most one shared variable,
Flag, and it only accesses this variable by reading.

— (Strong access restrictiorQ)perationcheck accesses at most one shared variable,
Flag, it only accesses this variable by reading, and it returnaslaevthat depends
only on what it reads froni'ag.

With the weak access restrictiarheck can remember and use process-local state across
its executions, while with the strong access restrictidgagk is a memoryless operation
that is a function offlag alone.

We are interested in solutions in which variables are ataetgisters or arrays of
atomic registers, and an atomic step can read or write at omesatomic register.

3 Algorithms

We now give a solution to the mailbox problem with the strongess restriction and,
a fortiori, with the weak access restriction as well. It isy#o find such a solution if
Flag can hold an unbounded number of values. For example, we esthesilgorithm
mentioned in the introduction in which the postman writesrote and raises the flag
in one atomic step, except having him write his noté&'lag. WWe now present a solution
in which Flag is an arrayFlag[0..1] with two single-writer atomic registers (a single-
writer atomic register is an atomic register writable byragi process), each of which
can assume only 14 values. We do not know if there is a solthi@miruses fewer values.

We explain our algorithm in several steps. We first preserawiliary protocol
in Section 3.1. Then, in Section 3.2, we give a solution torttelbox problem that
is non-blocking and uses flags with unbounded timestampSetition 3.3, we show
how to bound the timestamps. Finally, we show how to make larighm wait-free in
Section 3.4.

3.1 Thesussus protocol

Thesussugprotocol is defined in terms of an operatiamsus(v) that can be invoked at
most once by each procesdntuitively, when a processinvokessussus(v) with v =

v;, the process tries to communicate valyeo the other process and learn any value
communicated by the other process. The operation returosimome and a value to
process. This value is eithet or the valuev; _; with which the other process invokes
sussus. The outcome is eithesucces®r unknown A succes®utcome indicates that
processi communicates its value successfully to the other processided the other
process invokes operatienssus and completes it. Amnknowroutcome indicates that
process does not know whether it communicates its value succegsildre precisely,
the protocol is bounded wait-free and satisfies the follgv@afety properties:

— (SU1)If both processes complete their operation exectftithen at least one ob-
tains the outcomeuccess.

4 A process may not complete the operation execution if itsstaging steps.

variablesA =[i €0..1+ 1],
B=[i€0..1— 1]
(* A andB are shared arrays indexed by. 1 with A[i] = B[i] = L for eachi *)

procedure sussus(v) (* output: outcome, outvalue *)
{
si: Alself] := v; (* self is the process id: 0 or 1*)
s2: outvalue := A[l — self];
if (outvalue = 1)
outcome := “success”; (* Case A*)
else{
s3: Blself] := “done”;
s4: if (B[1— self]=1)
outcome := "“unknown”; (* Case B *)
elseoutcome : = “success”; (*Case C¥)
h
s5: return;
b

process(Proc € 0..1)
(* process-local variables *)
variables outcome, outvalue;

{

m1: with (v € Int){ call sussus(v); }

Fig. 1. The sussugprotocol.

— (SU2)For eachi, if processi completes the operation execution before process
1—1 invokes the operation, then processbtains the outcomeuccess.

— (SU3)For eachi, if both processes complete the operation execution antkpso
i obtains the outcomeuccess, then proces$—i obtains the value,; with which
process invoked the operation.

Figure 1 shows the sussus protocol, writtenimaL [7]. Proceduresussus shows
the code for operatiorussus, while the code at the bottom shows an invocation to
sussus With a valuev chosen non-deterministically from the det of all integers. The
outcome and value returned by operatiansus are placed in variablesutcome and
outvalue, respectively. Labels iffcAL indicate the grain of atomicity: an atomic step
consists of executing all code from one label to the nexthnfirst step of procedure
sussus, process sets array elemem|:] of shared variablel to valuew. In the next
step, processreadsA[1—i] and stores the result in local variabletvalue. If the value
read isL then process setsoutcome to “success”. Otherwise, in a third step, process
i setsB[i] to “done” and, in a fourth step, it readB[1—1]; if the result isL, process
i setsoutcome to “unknown”, otherwise it setsutcome to “success”. Observe that
each atomic step accesses at most one array element of oad shdable.

To see why the protocol satisfies properties SU1-SU3, obsbat there are three
possibilities for the values of variablesitcome and outvalue when a process com-
pletes its operation:

Case A:outcome = “success”, outvalue = L
Case B:outcome = “unknown”, outvalue # L
Case C:outcome = “success”, outvalue # L

These cases are indicated by comments in the code.

Figure 2 shows these cases as six pairs, where eacljipair represents process
1 ending up in case. Beneath each such pair, we indicate the outcome that éces
obtains, withS standing forsuccess and U for unknown. Two adjacent pairs indicate
the results obtained by each process in some executionxgorpe, we see the adja-
cent pairg 1, B) and(0, C') and the letterd/ andS beneath them. This indicates that,
in some execution, procesends up in cas® with outcomeunknown, while process
0 ends up in cas€' with outcomesuccess. It turns out thaeveryexecution in which
both processes complete their executionofsus corresponds to some adjacent pair
in the figure. It is easy to prove this by straightforward casalysis, and even easier
by model checking the'cAL code. Properties SU1-SU3 follow easily from this fact
together with the observation that_; is the only value other thah that process can
possibly obtain. (Remember that each process invokes tipesassus at most once.)

(0,4) (1, B) (0, C) (1, C) (0, B) (1, 4)
S U S S u S

Fig. 2. Possibilities when both processes complete executioredfitbsugprotocol.

3.2 Non-blocking algorithm with large flag values

We now present a solution to the mailbox problem that is nloeking and uses flags
that keep large, unbounded timestamps. In this algorithenpbstman and wife each
keep a private counter with the number of times that they lexeeuteddeliver and
remove, respectively. To deliver or remove a letter, a proces®iments its counter and
executes a procedure to compare its counter with the otbeeps’s counter (see proce-
duresdeliver andremove in Figure 3). The comparison procedure is explained in tetai
below. Its effect is to write td"lag[i] a record with two fieldsRel and Timestamp. Rel
is either ‘=" or “£", according to the result of the comparisdfimestamp indicates
how recent the result ilkel is; this information is used elsewhere to determine which
of Flag|[0] or Flag[1] has the most recent result.

The wife checks if the mailbox has letters or not by readffigy[0] and Flag[1],
choosing the flag with highest timestamp, and verifying #ttfiag says <” or “ A", If
it says ‘=" then the wife considers the mailbox to be empty, otherwizbge non-empty
(see procedureheck in Figure 3).

variables (* shared variables*)

A=[kent,ie€0..1— 1], (* Ais an array indexed by the integers aid. 1 *)
B=[kelntic0..1— 1],
Flag=[i € 0..1 — [Timestamp—0, Rel—"="]]; (* Flag is an array of records with

fields Timestamp and Rel initialized to 1 and "=" *)
process(proc € 0..1)

variables (* process-local variables)
counter = 0, (* # times removed/delivered *)
round = 0, (* current round number *)
otherc = 0, (* last known counter of other process *)
outcome, (* output of procedurenultisussus *)
outvalue, (* output of procedurenultisussus *)
hasmail, (* output of procedureheck *)

m1: while (TRUE) {

if (self =0){ (* wife-specific code *)
m2: call check();
m3: if (hasmail) call remove();
else calldeliver(); (* postman-specific code *)
} (* while ¥)

procedure deliver(}

di: counter := counter + 1;
d2: call compare(counter);
d3: return;
b
procedure remove(){
rl: counter := counter + 1;
2. call compare(counter);
3: return;
b
procedure check() (* output: hasmail *)
variables ¢t_f0, t_f1; (* procedure-local variables*)
{

cl: t-f0 := Flag[0];
c2: t_f1 := Flag[l];
3. if (tof0.Timestamp > t_f1. Timestamp){

if (t_f0.Rel =*“=") hasmail : = FALSE;
elsehasmail : = TRUE;
} else{
if (t_f1.Rel =*“=") hasmail : = FALSE;
elsehasmail : = TRUE;
h
c4: return;

h
Fig. 3. Non-blocking algorithm with large flag values (1/2). Topasbd and global variable defi-
nitions. Middle: starting code. Bottom: procedures.

procedure compare(c)
{
sl outcome := “unknown”;
s2: while (outcome # “success”) {
(* advance round *)

s6: round := round + 1;
S7: call multisussus(round, c);
s8: if (outvalue # 1) {
otherc := outvalue; (* rememberoutvalue *)
h
}; (* while *)
s9: if (¢ # otherc)
Flag(self] : = [Timestamp — round, Rel — “#"];
elseFlag(self] : = [Timestamp — round, Rel — “="];
s10: return;
h
procedure multisussus(rnd, v) (* output: outcome and outvalue *)
{
ssl: Alrnd, self] :=v;
ss2: outvalue := A[rnd,1 — self];
ss3: i (outvalue = 1)
outcome := “success”;
else{
ss4: B[rnd, self] : = “done”
ss5: if (B[rnd,1 — self] = 1)
outcome := “unknown”;
elseoutcome : = “success”,
h
ss6: return;
h

Fig. 4. Non-blocking algorithm with large flag values (2/2).

In the comparison procedure, a procésxecutes one or more rounds numbered
1,2, ..., starting with the smallest round it has not yet execute@alch round:, pro-
cess: executes an instance of tBassugrotocol to try to communicate the value of
its counter and, possibly, learn the value of the other m@iseounter. If the outcome
of sussuss successprocess compares its counter with the most recent value that it
learned from the other process. The comparison result igenrto Flag[i] together
with timestampk, the process’s current round. The process is now done ergahe
compare procedure. If, on the other hand, the outcomsudgsuss unknowrthen pro-
cessi proceeds to the next rourid-1. This continues until, in some round, the outcome
of sussugs success

The detailed code for the comparison procedure is showngar€i4. It invokes

a multi-instance version of theussugprotocol in procedurenultisussus, which is a
trivial extension of the code in Figure 1. Shared variaBlges, used in the mailbox

problem definition, is not shown in the code: for clarity, veplaced it with two shared

variables,A andB. These variables should be regarded as fiéldiss. A andNotes. B

of Notes. Procedurecheck writes its return value to process-local variablesmail,

since intcAL, a procedure call has no mechanisms for returning a value.
Intuitively, the algorithm works because the rounds predadvay to order operation

executions, ensuring linearizability. Roughly speakiwg, can assign each operation

execution to a round, as follows:

— An execution ofremove or deliver by a process is assigned the first round in its ex-
ecution in which the other process learns the process’&\@ilthe process obtains
outcomesucces$rom sussus

— An execution ofcheck is assigned the larger of the timestamps it reads 0]
and Flag[1].

We now order operation executions according to their assignund number. If two
operation executions are assigned the same round numberdeedeliver before
remove beforecheck operations. This ordering ensures that if some operatieawdion
op completes before another operation executiphstarts therop is ordered before
op’. For example, if an execution @kliver by the postman completes in rouhdhen
a subsequent execution@fmove by the wife cannot be assigned to roundr smaller.
This is because it is impossible for the postman to learn tifesasnew value in round
k or smaller since the postman already executed them.

Theorem 1. The algorithm in Figures 3 and 4 is a non-blocking algorithmat solves
the mailbox problem with the strong access restriction.

A fortiori, the algorithm is also a non-blocking algorithimt solves the mailbox prob-
lem with the weak access restriction.

3.3 Non-blocking algorithm with small flag values

We now give an algorithm that uses flags with small values. Wesalby modifying
the algorithm in the previous section, which uses unboutidegstamps, to use instead
timestamps that assume only 7 different values.

In the new algorithm, as in the previous one, processes &x@tiasynchronous)
rounds. However, in the new algorithm, the timestamp thabagss uses in rouridis
notk; it is a value chosen dynamically at the end of roundl according to what the
process sees in that round.

Let ts; ; be the timestamp that processses in round:. To understand hows, ;
is chosen, we consider some properties that it must haveid @sume that treissus
protocol in roundk returns outcomeuccesgor processi—otherwisetsy, ; does not
get written toFlag[i] and so it is irrelevant. In the previous algorithm of SectB?,
tsi,i=Fk. Such a timestamp has the property that it is larger thaniamgstamps from
previous rounds. This is too strong a property to try to §atigith bounded times-
tamps. However, closer inspection reveals that it is sefficior ¢s;, ; to be larger than
previous-round timestamps that could appeaFing[1—i] at the same time thaty, ;
appears inFlag|i]. It turns out that there are only two such timestamps: thestamp

variables (* shared variables*)
same as before except for thisminor change:

Flag=[i € 0..1 — [Timestamp—1, Rel—"="]];

process(proc € 0..1)
variables (* process-local variables)

same as before, with the following additions

ts =1, (* current timestamp *)
nextts = 2, (* next timestamp to use *)
otherts = 1, (* last known timestamp of other process *)
{
same as before
}

procedure deliver() same as before
procedure remove() same as before

procedure check()
same as before, except replace

if (t_f0.Timestamp > t_f1.Timestamp){
with

if (t_f0.Timestamp > t_f1.Timestamp) {

procedure multisussus(rnd, v) same as before

Fig. 5. Non-blocking algorithm with small flag values (1/2). Thigtia very similar to Figure 3.

already inFlag[1—i] when process ends round:—1, and the last timestamp learned
by process when process ends round:—1. Thus, at the end of rounfe-1, process
needs to picksy ; so that it dominates these two timestamps.

Therefore, to bound the number of timestamps, we must chibese from a fi-
nite setT'S with an antisymmetric total relatior such that, for any two elements
t1,t2€ TS, there is an elemente TS that strictly dominates bothy, andt¢, under-.
This would be impossible if we required the relatierto be transitive, but we do not.
A computer search reveals that the smallest set with thagiégjvelation>- contains 7
elements. We tak&'S = 1..7 to be our 7-element set and define

Array = (

~

v w

o~~~ o~~~
oo o ==
O}—‘}—‘l—lO)—lO
=
— o= O o
= e = el e
,_.}_‘Ql_.,_.oo
_ O = O == O
e

e e
—
b
3
=)
<
<
£
I

v w
dominate(v, w) = CHOOSEz €1..7:z>vAz>w

procedure compare(c)
{
sl: outcome := “unknown”;
s2: while (outcome # “success”) {
(* advance round *)

s6: round := round + 1;
* ts : = nextts; (* use timestamp chosen at end of last round *)
* ST call multisussus(round, [Timestamp — ts, Count — c]);

(* record with Timestamp and Count fields set tats and ¢ *)

s8: if (outvalue # L) {
* otherts := outvalue. Timestamp; (* remember timestamp of other process *)
* otherc : = outvalue.Count; (* remember counter of other process *)

h
* nextts : = dominate(otherts, Flag[l — self]. Timestamp); (* for next round *)
}; (* while *)

s9: i (¢ # otherc)
* Flag[self] : = [Timestamp +— ts, Rel — “#£"]; (* usets as timestamp *)
* elseFlag|self]: =[Timestamp — ts, Rel — “="];

s10: return;

h

Fig. 6. Non-blocking algorithm with small flag values (2/2). Asgks$ indicate changes relative
to Figure 4.

Figures 5 and 6 shows the detailed code of the algorithmis&dtabove. Figure 5 is
very similar to Figure 3. The significant changes to the atborare in Figure 6, where
asterisks indicate a difference relative to Figure 4.

Theorem 2. The algorithm in Figures 5 and 6 is a non-blocking algorithmat solves
the mailbox problem with the strong access restriction.désiaFlag with two 14-
valued single-writer atomic registers.

3.4 Wait-free algorithm with small flag values

The algorithms of Sections 3.2 and 3.3 are non-blocking btitvait-free, because a
process completes @&liver or remove operation only when it obtains outcorsec-
cessfrom thesussugprotocol. Thus, if the process keeps getting outcamienownin
every round, the process never completes its operatioseCxamination reveals this
could only happen with the wife, because of the way proceissege operations: if
the postman got stuck forever indaliver execution, the wife would execute enough
remove operations for the mailbox to be empty, which would causedstop invoking
remove (Since she invokesemove only if check returnsTRUE), and this would allow
the postman to eventually obtain outcosuecessnd complete his operation.
Therefore, the algorithm fails to be wait-free only in ex@éens in which the post-
man executes infinitely manyeliver operations while the wife gets stuck executing

remove. But there is a simple mechanism for the wife to complete lperation. Be-

cause the postman’s counter is monotonically increasintiei wife knows that the
postman’s counter is larger than her own, she can simply &mper operation and
leave her flag unchanged, since her flag already indicatéhénacounter is smaller
than the postman’s — otherwise she would not be executingve in the first place.

This mechanism is shown in Figure 7 in the statement labed8d “

maz(z,y) = IFz >y THEN z ELSEy

procedure compare(c)
variables t_round, t_otherround;
{
si: outcome := “unknown”;
s2: while (outcome # “success”) {
x s3 if (self =0 A ¢ < otherc) return; (* wife process *)
(* advance or skip round *)
* sS4 t_otherround := Round[l — self];
* S5 t_round := maz(Round[self] + 1, t_otherround — 1);
% S6: Round|[self] : = t_round,
ts : = nextts;
s7: call multisussus(t_round, [Timestamp — ts, Count — c]);
s8: if (outvalue # 1) {
otherts : = outvalue. Timestamp,
otherc : = outvalue. Count,
h
nextts : = dominate(otherts, Flag[l — self]. Timestamp);
}; (* while *)
s9: if (¢ # otherc)
Flag[self] : = [Timestamp — ts, Rel — “#£"];
elseFlag(self] : =[Timestamp — ts, Rel — “="];
s10: return;
b

Fig. 7. Wait-free algorithm with small flag valuescompare procedure. Asterisks indicate
changes relative to the non-blocking algorithm with smalgflalues.

We have also included a simple optimization in which, if ps&; sees that its
round r; is lagging behind the other process’s round ;, then process jumps to
roundr;_;—1. The reason it is possible to jump in this case is that procedsobtain
an outcomainknownfrom the sussugprotocol in every round from; to r;_;—1. In
each of these rounds, the process would learn the value offtlee process, but what it
learns in around is subsumed by what it learns in a higherdoTinmerefore, the process
only needs to execute round_,;—1. This optimization is shown in Figure 7 in the
statements labeled “s4” through “s7”. It uses an additishaled arrayRound[i] that

stores the current round of procesghis used to be in process-local variabteind,
which no longer is used), where initial§ound[i] = 0 for i = 0, 1.

Theorem 3. The algorithm in Figures 5 and 7 is a wait-free algorithm tisalves the
mailbox problem with the strong access restriction. It usddag with two 14-valued
single-writer atomic registers.

4 Impossibility

We now show that it is impossible to solve the mailbox probieghen Flag has only
two bits, each writable by a single process. This result fieien if Notes can hold
unbounded values.

Theorem 4. There is no non-blocking algorithm that solves the mailbabfem with
the strong access restriction whefiag is an array with two 2-valued single-writer
atomic registers.

Proof sketchWe show the result by contradiction: suppose there is sucigarithm
A. Let Flag[0] and Flag[1] denote the two 2-valued single-writer atomic registers. We
show how to used to solve consensus using only registers, which is impos$§ihio].

If Flag[0] andFlag[1] are writable by the same process, it is easy to get a contradic
tion. Without loss of generality we can assuifiieg[0] is writable by the wife (process
0) andFlag[1] is writable by the postman (process 1).

A solo executiorof an operation is one where only one process takes steps (the
other does nothing).

We define a functior such thatC(F, F'1) is the value returned by a solo execu-
tion of check whenFlag[i] = F; at the beginning of the execution. This is well-defined
because (1) with the strong access restriction, operatieck returns a value that de-
pends only on what it reads frofifag, and (2) in a solo execution @eheck, the value
of Flag does not change.

Assume without loss of generality that initial§iag[0]= Flag[1]=0.

Claim. C(0,0)=C(1,1)=FaLseand C(0,1)=C(1,0)=TRUE.

To show this claim, note that initiallyheck returnsFALSE as no letters have been
delivered. Moreover, initiallylag[0]= Flag[1]=0. ThereforeC'(0,0) = FALSE.

From the initial system state, a solo executioniefiver by the postman must set
Flag[1] to 1 (otherwise a subsequent executiorchéck incorrectly returngC'(0,0) =
FALSE) and we have”(0,1) = TRUE.

After this solo execution ofieliver, suppose there is a solo executiorrahove by
the wife. This execution setBlag[0] to 1 (otherwise a subsequent executiorchéck
incorrectly returng”(0, 1) = TRUE) and we have’(1, 1) = FALSE.

After these solo executions déliver andremove, SUppose there is a solo execution
of deliver. Then, it setsFlag[1] to 0 and we haveC'(1,0) = TRUE. This shows the
claim.

Let S be the system state after a solo executiodd@fver from the initial state. In
stateS, Flag[0]=0 and Flag[1]=1.

We now give an algorithm that we will show solves consensugif®two processes.
Processg first writes its proposed value into a shared variali[¢]. Then, starting from
stateS, procesd) executes operatioremove of algorithm .4 and proces$ executes
operationdeliver of A. If process ends up with a different value iAlag[i] than when
it started, then it decides on the value Bf0]; otherwise, it decides on the value of
V[1].

This algorithm solves consensus because (a) if protesecutes by herself then
remove flips the value ofFlag[0] so the process decides dn[0]; (b) if processl
executes by himself thedeliver leavesFlag[1] unchanged so the process decides on
V[1]; (c) if both processes execute then, after they finish, tteegaof Flag[0] and
Flag[1] either both flip or both remain the same (it is not possibleofdy one of them
to flip, becauseC'(0,0) = C(1,1) = FALSE and operatiorcheck must returnTRUE
afterwards), and so both processes decide the same value.

This consensus algorithm uses only atomic registers amsdwait-free sinced is
non-blocking and each process invokes at most one opeaEtidnThis contradicts the
consensus impossibility result [2, 9].

5 Bounded-signaling problems

The mailbox problem is an instance of a broader class of pm$)] callecbounded-
signaling problemswhich we now define. In a bounded-signaling problem, each pr
cessi = 0,1 has an input; that can vary. From time to time, a process wishes to
know the value of a finite-range functigifvo, v1) applied to the latest values of,
andv;. Each inputy; could be unbounded and, when it varies, progesan access all

of shared memory. However, when a process wishes to knovatbst ivalue of, it is
limited to accessing a small amount of state.

For example, in the mailbox problemy is the number of letters that the wife has
removedy; is the number of letters delivered by the postman, And, v,) indicates
whethervy = v; or vy # wv;. The mailbox problem places some problem-specific
restrictions on how andv; can change. For instance, they are monotonically nonde-
creasing and, < v, because ifcheck returnsrALSE then the wife does not execute
remove. Other bounded-signaling problems may not have restnistad this type.

A precise statement of a bounded-signaling problem is thediog. We are given
a finite-range functiorf(z, y), and we must implement two operationsange(v) and
readf (). If operations never execute concurrentbydf must always return the value of
f(vo, v1) whereuv, is the value in the last preceding invocatiortmnge(v) by process
i orv;, = L if processi never invokedchange(v). The concurrent specification is
obtained in the usual way from this condition by requiringelrizability. Furthermore,
the implementation ofeadf must access a small amount of persistent state. We consider
two alternative interpretations of this requirement:

— (Weak access restrictiof)perationreadf accesses at most one shared variable, of
finite range; and it accesses this variable only by reading.

— (Strong access restrictiorperationreadf accesses at most one shared variable,
of finite range; it accesses this variable only by reading;iareturns a value that
depends only on what it reads from the shared variable.

It turns out that the algorithm in Section 3.3 can be changddloows to solve any
bounded-signaling problem with the strong access reistnictVe replaceleliver and
remove With a single procedurehange(v) that setscounter to v, and we modify the
end of procedureompare to computef with arguments: and otherc (instead of just
comparinge and otherc), and write the result and timestamp kag. The resulting
algorithm is non-blocking. It is an open problem whether¢hexist wait-free algo-
rithms for the general problem. Our wait-free algorithm ecton 3.4 does not solve
the general problem since it relies on problem-specificimgins on the inputs,.

6 Related work

The mailbox problem is a type of consumer-producer syndhation problem, with
the unique feature that the consumer must determine if treréems to consume by
looking only at a finite-range variable.

Work on bounded timestamping shows how to bound the timgsarsed in certain
algorithms (e.qg., [5, 1]). That work considers a fixed-léngitray that holds some finite
set of objects that must be ordered by timestamps. In ouritigus, it is not evident
what this set should be. However, we believe some of the pietations devised in that
body of work could be used in our algorithms instead of thatieh given byMatriz
in Section 3.3 (but this would result in much larger timegtarthan the ones we use).

AcknowledgementsWe are grateful to Ilya Mironov for pointing out to us that the
relation of Section 3.3 should exist for sufficiently largess and to the anonymous
reviewers for useful suggestions.

References

1. D. Dolev and N. Shavit. Bounded concurrent time-stamp®8ig\M Journal on Computing
26(2):418-455, Apr. 1997.

2. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibdf distributed consensus with
one faulty processl). ACM 32(2):374-382, Apr. 1985.

3. M. P. Herlihy. Wait-free synchronizatiolrACM Transactions on Programming Languages
and Systemd 3(1):124-149, Jan. 1991.

4. M. P. Herlihy and J. M. Wing. Linearizability: a correcisecondition for concurrent objects.
ACM Transactions on Programming Languages and Syst&2(3):463—492, July 1990.

5. A. Israeli and M. Li. Bounded time-stamp®istributed Computing6(4):205-209, July
1993.

6. L. Lamport. A new solution of Dijkstra’s concurrent pragiming problem.Communica-
tions of the ACM17(8):453-455, Aug. 1974.

7. L. Lamport. The TcaL algorithm language, July 2006. http://research.
m crosoft.com users/ | anport/tlal/pluscal.htm . The page can also be
found by searching the Web for the 25-letter string obtaihgdemoving the *” from
ui d- | anport pl uscal honepage.

8. B. W. Lampson and D. D. Redell. Experience with processdswonitors in MesaCom-
munications of the ACML7(8):453—-455, Aug. 1974.

9. M. C. Loui and H. H. Abu-Amara. Memory requirements foregment among unreliable
asynchronous processesdvances in Computing Researdh163—-183, 1987.

10. J. H. Saltzer. Traffic control in a multiplexed computgstem. Technical Report Project

MAC Technical Report MAC-TR-30, M.I.T., June 1966.

