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ABSTRACT

We present multiversion timestamp locking (MVTL), a new genre
of multiversion concurrency control algorithms for serializable
transactions. The key idea behind MVTL is simple: lock individual
timestamps instead of locking objects. After presenting a generic
MVTL algorithm, we demonstrate MVTL'’s expressiveness: we give
several simple MVTL algorithms that address limitations of current
multiversion schemes, by committing transactions that previous
schemes would abort, by avoiding the problems of serial aborts or
ghost aborts, and by offering a way to prioritize transactions that
should not be aborted. We give evidence that, in practice, MVTL-
based algorithms can outperform alternative concurrency control
schemes.
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1 INTRODUCTION

Serializable transactions are a powerful paradigm available in many
computing systems, such as transactional memory, database sys-
tems, and key-value storage systems. To ensure serializability, trans-
actions require a scheme for concurrency control to handle any
negative consequences of transaction interleaving.

The literature on concurrency control is rich [6, 26], and a particu-
larly appealing class of algorithms is called multiversion concurrency
control [5]. Briefly, these algorithms keep a history of each object,
containing many versions of the data with associated timestamps.
This history gives the system a choice of which version to use when
an object is accessed. This choice permits more transactions to
execute concurrently without blocking or aborting. For example,
in some multiversion algorithms [6, 8], read-only transactions can
execute without ever blocking or aborting, and update transactions
can concurrently update the same object. Enabling more concur-
rency has become particularly important with the proliferation of
multi-core and large-scale systems. Multiversion algorithms have
wide application: they are used in database systems both commer-
cial and academic [10, 19, 26, 27], and recent work has applied
them to key-value storage systems and transactional memory (e.g.,
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[11, 15-17, 22, 23]). In this paper, we do not restrict ourselves to
particular applications, but rather study multiversion algorithms in
their broadest scope.

There are three main genres of multiversion algorithms: lock
based, timestamp ordering, and serialization graph based [6]. Lock-
based algorithms (e.g., MV2PL [6]) acquire locks to avoid the ill-
effects of concurrency; these algorithms are very simple. Timestamp
ordering algorithms (e.g., MVTO [6]) assign a timestamp to each
transaction, and then serialize transactions by timestamp; these
algorithms permit read-only transactions to execute without ever
aborting. Serialization graph algorithms (e.g., MVSGT [26]) detect
cycles in the serialization graph to prevent a violation of serializ-
ability; these algorithms permit higher levels of concurrency than
the alternatives.

Despite their many benefits, all types of multiversion algorithms
have limitations. Lock-based algorithms significantly restrict the de-
gree of concurrency. Timestamp ordering algorithms are susceptible
to aborts, including serial aborts—aborts in serial executions—and
ghost aborts—aborts caused by a conflict with a transaction that
already aborted. Serialization graph algorithms are complex and
incur significant computation overheads [3, 16, 20].

In this paper, we introduce a new genre of multiversion algo-
rithms, called multiversion timestamp locking or MVTL in short.
MVTL is based on a simple idea: use locks as in lock-based algo-
rithms, but lock individual timestamps of objects, rather than entire
objects at a time. A transaction is allowed to commit if it can find
at least one timestamp that it managed to lock across all its objects.
Intuitively, MVTL performs well because it uses locks with fine
granularity: not only individual objects have separate locks, but
individual timestamps within objects have their own locks. Locking
at fine granularity increases parallelism and decreases blocking and
aborting, as the system can explore many serialization points for
each transaction.

Conceptually, MVTL keeps a lock state for each object and each
timestamp, which amounts to an infinitely large lock state. How-
ever, in practice we can reduce the lock state significantly using
interval compression, so that each object holds just a few lock
intervals, and this state can be subsequently discarded when the
associated versions are purged.

To precisely define MVTL, we give a generic algorithm (§4) that
has several nondeterministic choices, such as what timestamps each
operation tries to lock, and how locks are acquired (wait or give up
on blocked locks). We prove that these choices do not affect safety:
the generic algorithm is correct irrespective of them. However, the
choices are crucial for performance.

We then propose several specific algorithms that specialize the
generic MVTL algorithm by fixing these choices to obtain different
benefits (§5). These algorithms are simple and address some impor-
tant drawbacks of existing multiversion algorithms, such as serial
aborts, ghost aborts, the lack of a priority scheme for transactions,
and more. We also show that pessimistic and timestamp ordering
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algorithms can be seen as special cases of MVTL. Thus, in a precise
sense, MVTL unifies these algorithms.

Next, we discuss some practical considerations around MVTL,
such as how to compress the lock state (§6). We separate out these
considerations because they are orthogonal to the concepts under-
lying the MVTL algorithm. However, they are important to using
MVTL in practice.

Then, we show how to extend the basic MVTL algorithm to
distributed transactions in a message-passing system (§7). We be-
lieve MVTL is particularly relevant in this setting as it can be quite
communication efficient.

We implement an MVTL-based algorithm, and experimentally
compare its behavior with multiversion and lock-based alternatives
(§8). The results indicate significant advantages of MVTL in read-
write workloads, and no disadvantages under read-only workloads.

To summarize, the contributions of this paper are the following:

e We propose a new genre of multiversion algorithms for transac-
tions, called multiversion timestamp locking (MVTL), which is
based on the idea of locking timestamps.

e We give several MVTL algorithms, which address various limi-
tations of current multiversion algorithms.

e We show that MVTL generalizes both multiversion timestamp
ordering and pessimistic multiversion algorithms.

e We discuss practical considerations for implementing MVTL,
including techniques to compress the lock state.

e We describe a version of MVTL for distributed transactions.

e We implement an MVTL-based algorithm and demonstrate its
advantages over alternatives.

The main contribution is conceptual in nature: locking individual
timestamps is a new way to approach multiversion algorithms. The
specific MVTL algorithms we present are simple and just scratch
the surface; the investigation of additional MVTL algorithms is an
exciting direction for future work. Also interesting is to implement
MVTL in other types of transactional systems, such as software
transactional memory, transactional key-value storage systems,
transactional object systems, and database systems. While the fun-
damental MVTL algorithms we present are system agnostic, the
details of how these algorithms can be best implemented depend
on the system and deserve further study.

Due to space limitations, details of our contribution are omitted,
including proofs and pseudo-code of some algorithms. They are
given in the full paper [1].

2 MODEL

We consider a standard model for a multi-threaded concurrent sys-
tem [13]. The system has processes that communicate via atomic
shared memory. The system is asynchronous: there are no bounds
on the relative speed of processes. We assume the existence of a dis-
crete global clock, and processes may or may not have access to the
global clock. More precisely, processes may have local clocks that
match the global clock (“synchronized clocks”) or that are within a
known bound e of the global clock (“e-synchronized clocks”).

We consider algorithms that implement a transactional storage
system. Such a system maintains a set of objects and allows pro-
cesses to manipulate the objects using transactions. Each object has
a unique key (identifier) and, by abuse of language, we refer to the

object and its key interchangeably. The system supports four op-
erations with their usual semantics: BEGIN(£x) starts a transaction
tx, COMMIT(tx) tries to commit tx and returns a success indication,
READ(tx, k) reads key k within tx, and WRITE(¢x, k, v) writes v to k
within tx. Transactions are dynamic: their read and write operations
can depend on the results of prior operations in the transaction.
Our correctness condition is multiversion view serializability,
a form of serializability well-suited for multiversion algorithms.
Roughly, this condition requires every multiversion schedule of the
algorithm to be equivalent to a serial monoversion schedule [6, 26].
Some of our results refer to a workload, which specify the trans-
actional work submitted to the system. More precisely, a workload
is a sequence of operations indexed by the transaction they belong
to, where each operation is read(k), write(k, v), or commit. We use
workloads to study how different protocols react to the same inputs.

3 OVERVIEW

After recalling multiversion concurrency control, we introduce the
notion of timestamp locking and explain how it addresses weak-
nesses of existing multiversion algorithms.

Multiversion concurrency control and the MVTO+ algorithm.
A well-known genre of multiversion algorithms is multiversion
timestamp ordering. Its basic idea is to assign a timestamp to each
transaction and then use the timestamp to determine (a) what ver-
sion the transaction reads from, (b) what version it writes to, and
(c) the serialization order of transactions. This idea can lead to sev-
eral slightly different algorithms. To focus the discussion, here we
present a concrete algorithm denoted MVTO+, which is identical
to the MVTO algorithm in [6] but with an improvement: it avoids
cascading aborts by not reading uncommitted data. For each object,
MVTO+ keeps many versions and a timestamp for each version. It
is useful to think of each object as an evolving timeline with values.
Each transaction tx has a unique timestamp t; when tx reads an
object, it obtains the version of the object with the largest times-
tamp before t. When tx writes an object, tx does not immediately
produce a new version but instead it stores the written value in
a temporary area for the transaction. Upon commit, ¢x takes each
written value in the temporary area and produces a new version
with timestamp ¢.

e
zf—t—Ji—+—
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For example, the figure above depicts three objects X, Y, and
Z. Each object has an initial version denoted #. In addition, X has
two other versions with data a and b and timestamps 2 and 9; Y
has data ¢ with timestamp 4; and Z has data d with timestamp 8.
Suppose a transaction tx is assigned timestamp 6. If tx reads X, it
obtains a—the largest version with a timestamp before 6. Similarly,
if tx reads Y, it obtains c. If tx writes e to Z and commits, then Z
gets a new version with data e and timestamp 6.

Ultimately, transactions are serialized by the order of their times-
tamps. A key implication is that, after tx reads X and obtains a,



another transaction should not produce a version of X with a times-
tamp between 2 and 6. To prevent this behavior, MVTO+ keeps a
read-timestamp for each version: this is the largest timestamp with
which the version was read by a transaction. In the example, after
tx reads X and obtains a, the read-timestamp of a becomes 6 (if it
was not already larger than 6).

Timestamp locking. We look at MVTO+ slightly differently, using
our new notion of timestamp locking. This notion allows us to
generalize MVTO+ into our new MVTL algorithm. Rather than
read-timestamps, we can think that each object has several locks,
one for each timestamp. When tx reads X, rather than updating the
read-timestamp of a to 6, we can think that tx obtains a read-lock
on each timestamp between 3 and 6. When another transaction
wishes to write a version with timestamp, say 5, it must obtain
the write-lock on that timestamp. But the read-locks by ¢x prevent
this from happening, as required by MVTO+. We can now see the
read-timestamp of a as simply a compact representation of the fact
that there are read-locks between 3 and 6.

Thinking about timestamp locks has several advantages over
read-timestamps. First, with read-timestamps, it is not clear what
should happen if tx aborts: should the read-timestamp of a be up-
dated to its previous value? But what is the previous value if several
other transactions read a concurrently? This is a hard question, and
MVTO+ avoids it altogether by taking an unnecessarily conserva-
tive approach: when tx aborts, it leaves the read-timestamp of a at
6. We show that this choice leads to ghost aborts. In contrast, times-
tamp locks provide a better alternative: if tx aborts, its read-locks
are removed but the read-locks of other transactions remain.

Second, with timestamp locks, there is no reason that a trans-
action should be restricted to obtaining write-locks on just one
timestamp, or obtaining read-locks on a range that ends with the
transaction’s timestamp. Permitting more choices allows the system
to avoid serial aborts, as we explain later.

These advantages are captured by our MVTL algorithm, which
we now briefly summarize. With MVTL, when a transaction wishes
to read an object, it selects a version of the object to read and obtains
read-locks on one or more timestamps adjacent to and immediately
following that version. To write an object, the transaction obtains
write-locks on one or more timestamps anywhere. To commit, the
transaction must find a single common timestamp that is read-
locked or write-locked across all objects read or written by the
transaction, respectively. If such a timestamp exists, the transaction
commits; otherwise, it aborts.

The exact timestamps that are locked by reads and writes depend
on a locking policy. The algorithm remains correct for any locking
policy, but a poorly chosen policy causes many aborts because
there is no common locked timestamp. We present some simple but
interesting algorithms using various locking policies, each with its
own advantages.

4 GENERIC MVTL ALGORITHM

We now present our generic MVTL algorithm in detail. We start
with some basic concepts (§4.1), explain a simple lock extension we
use (§4.2), and cover the main algorithm (§4.3). We present a central-
ized version of MVTL designed for a single server. We later describe
a distributed version of MVTL intended for distributed transactions.

Some practical considerations for implementing MVTL, including
how locks and data can be compacted, are discussed in §6.

4.1 Preamble

The system keeps many versions of data in an array Values[k, t]
where k is a key and ¢ is a timestamp. To ensure processes pick
distinct timestamps, we add a process id to a timestamp; thus, a
timestamp is a pair (v, p) ordered lexicographically, where v is a
number. There is a smallest timestamp denoted 0, and a special
initial value denoted #, such that initially Values[k, 0] = # for every
k. It is also useful to assume that initially Values[k,t] = L for every
k and t # 0, representing an empty storage system.

4.2 Freezable locks

In the MVTL algorithm, each version of a key is a write-once object—
an object initially set to L that may change its state at most once.
We define a simple variation of readers-writer locks, which we call
freezable locks, which are appropriate for such objects and we use
them in MVTL. A freezable lock is similar to a readers-writer lock,
except that a lock holder can freeze the lock to indicate that it will
never release it. Freezing is useful because it tells other processes
that they should not wait to acquire the lock; we use this feature
in several specialized MVTL algorithms. If a lock holder does not
freeze a lock, it is expected to release it eventually.

We apply freezable locks to write-once objects as follows. A
process acquires the lock in write mode if it intends to write the
object. The process may ultimately fail to write if the transaction
aborts, in which case it releases the lock; but if the transaction
commits, the process freezes its lock to ensure other processes will
not try to write the object again. Similarly, a process acquires the
lock in read mode to read the object and it freezes the lock in case of
a commit; if the object was not written (its state is L), this prevents
other processes from writing to it, sealing its fate.

4.3 Algorithm

Algorithm 1 shows the main code of the generic MVTL algorithm.
For clarity, we assume that the code in lines 17-19 is executed atom-
ically, but we later remove this assumption (§6). To write a value
into key k, a transaction obtains zero or more write-locks on times-
tamps for that key (function WRITE-LOCKS in line 4). Intuitively, a
write-lock on a timestamp ¢ for key k allows the transaction to com-
mit with timestamp t as far as accesses to k are concerned. After
getting the locks, the transaction remembers the key and value;
the write is not visible to other transactions until the transaction
commits.

To read a key, a transaction gets zero or more read-locks on
timestamps for that key (function READ-LOCKS in line 7), with the
requirement that these timestamps form a contiguous interval that
starts immediately after the version that the read returns. For in-
stance, if [tr+1, te] denotes the read-locked timestamps, then the
read must return the value committed with timestamp tr. This re-
quirement is necessary for serializability: intuitively, the read locks
permit the transaction to commit with any timestamp ¢ € [tr+1, te]
after having read v, by preventing other transactions from writing
a different value with a timestamp between tr and te. After locking,
the transaction remembers k and tr; knowledge of k is necessary



Algorithm 1 The generic MVTL algorithm (part 1/2): main code

Algorithm 2 The generic MVTL algorithm (part 2/2): policy

: function BEGIN(tx)
tx.readset < O0; tx. writeset « 0; tx.committs « L
> write © to k in transaction tx
> write lock some subset of timestamps
> remember key and value we wrote

1

2

3: function WRITE(tx, k, v)

4 WRITE-LOCKS(1x, k)

5 add (k, v) to tx.writeset

6: function READ(tx, k)

7: tr < READ-LOCKS(tx, k) > read lock some interval [tr+1, . . .] with
Values[k, tr] # L

> read k in transaction tx

8: if tr = 1 then return L > read failed
9: add (k, tr) to tx.readset > remember key and version we read
10: return Values[k, tr] > return committed value

11: function comMmIT(x) > try to commit transaction tx
12: COMMIT-LOCKS(x) > locks to acquire at commit time
13: T « {t : Yk € tx.readset.keys, tx has a lock on (k, ¢) and
Vk € tx.writeset. keys, tx has a write-lock on (k, )}
> try to find a locked timestamp for tx
14: if T = 0 then mark tx as aborted

15: else

16: tx.committs < coMMIT-TS(T)  » pick some timestamp in T
17: for (k, v) € tx.writeset do

18: freeze write-lock for tx on (k, tx.committs) » freeze locks
19: Values[k, tx.committs] <« v > expose committed value
20: mark tx as committed

21: if commIT-Ge(tx) then Ge(tx) > invoke gc or not
22: function Gc(tx) > garbage collect locks of tx after it ended
23: if tx committed then

24: for (k, tr) € tx.readset do

25: freeze read-locks for tx on [tr+1, tx.committs]

26: release all unfrozen read- and write-locks for tx

to commit, and knowledge of both k and tris needed to garbage
collect the locks of the transaction.

To commit, a transaction gets zero or more additional locks (func-
tion COMMIT-LOCKS in line 12) and tries to find a commit timestamp
t that is write-locked for every k in the write-set, and that is read-
or write-locked for every k in the read-set. (A key in the read-set
may be write-locked because the transaction read the key and then
wrote it.) If there are many such timestamps, the transaction picks
one (function coMMIT-Ts in line 16). The transaction then freezes
write-locks on that timestamp and records the written values so
that they can be seen by other transactions. As an optional step (as
determined by calling coMmIT-GC in line 21), the transaction may
garbage collect the locks it holds. Doing so freezes the read locks
between the version read and the commit timestamp, and releases
all other locks. If the algorithm skips garbage collection on commit,
garbage collection can be invoked any time later in the background,;
this is not shown in the code.

The algorithm depends on a policy of what locks to acquire, how
to pick one of many possible commit timestamps, and whether to
garbage collect during commit; these choices can depend on the
transaction and other considerations. The choices are determined by
the functions that we mentioned above: WRITE-LOCKS, READ-LOCKS,
COMMIT-LOCKS, COMMIT-TS, and coMMIT-GC. The generic MVTL
algorithm uses a generic policy that makes these choices nondeter-
ministically (Algorithm 2). For example, to obtain write locks, the
generic policy nondeterministically picks a set T of timestamps to

1: function WRITE-LOCKS(tx, k)

2 acquire write-locks for tx on (k, T) for some set T

3: function READ-LOCKS(tx, k) > returns a timestamp or L

4 acquire read-locks for tx on (k, T) for some T = [tr+1, . . .] where
Values[k, tr] # L

5 either return tr or return L

6: function COMMIT-LOCKS(tx)

7: acquire read- or write-locks for tx on some keys and timestamps

8: function commrT-Ts(T) return some t € T

9

: function coMMIT-GC(x) either return true or return false

lock. To obtain read locks, the policy picks an interval of timestamps
starting immediately after a committed version.

We prove that the generic MVTL algorithm is correct with its
nondeterministic choices. Naturally, this correctness carries over
to any specialization that fixes the nondeterministic choices. These
specializations lead to different algorithms (§5).

Some policies of the generic algorithm may cause deadlocks,
where a process waits forever to acquire a lock. In such cases,
standard techniques for deadlock detection can be used to abort the
required transactions (e.g., cycle detection in the wait-for graph,
timeout, etc). In the full paper, we show the following:

THEOREM 1. The generic MVTL algorithm (Algorithms 1 and 2)
ensures serializability.

5 SIMPLE MVTL ALGORITHMS

We now give several simple algorithms that are instances of the
generic MVTL algorithm, each with a different benefit. To specify
these algorithms, we specialize the generic policy of MVTL (Al-
gorithm 2). Due to limited space, we omit proofs and the detailed
pseudo-code of some algorithms; they are provided in the full paper.

5.1 The preferential algorithm

Roughly speaking, our preferential algorithm, denoted MVTL-Pref,
works with multiple timestamps for each transaction, where one
of the timestamps is preferential. The algorithm tries to commit a
transaction using its preferential timestamp, but if doing so would
abort, it tries one of the other timestamps. To ensure viability of the
other timestamps, the algorithm locks them as necessary during
the execution.

More precisely, MVTL-Pref is parameterized by a function A(t)
that takes the transaction’s preferential timestamp and returns a
non-empty set of alternative timestamps different from ¢. A(t) is a
choice of the user of the algorithm. For example, A(t) = {t—10, t+10}
indicates that t—10 and t+10 are the alternative timestamps for a
transaction with preferential timestamp t. The preferential times-
tamp itself comes from a clock, as in other timestamp-based proto-
cols.

We assume that clock timestamps are unique (e.g., by appending
the process id to each timestamp t) and that A(¢) also produces
unique timestamps (e.g., by using the process id in t for each times-
tamp in A(t)).

When executing a read on a key k, the algorithm determines a
version to return based on the preferential timestamp, and then



read-locks contiguous timestamps of k to cover as many alternative
timestamps as possible. When executing a write to key k, the algo-
rithm obtains no locks; rather, locks are acquired at commit time, as
follows. If the algorithm cannot obtain a write-lock for the prefer-
ential timestamp for each written key, it tries one of the alternative
timestamps. If it manages to obtain read- and write-locks for all
read and written objects at one of the timestamps, the transaction
commits; otherwise it aborts.

Algorithm 3 The MVTL-Pref algorithm

1: function INITIALIZATION(x)
2: tx.Pref TS « clock()
3: tx.PossTS « {tx.PrefTS} U A(tx.PrefTS)
> possible timestamps for #x

4: function WRITE-LOCKS(tx, k) return » lock write-set only on commit
5: function READ-LOCKS(tx, k)
6: repeat
7: tr < max{t : t < tx.PrefTS and Values[k, t] +# L}
> candidate value to read
8: tmax « max({t € tx.PossTS :
no timestamps in [#r+1, ¢] are write frozen}
9: for t « tr+1to tmaxdo » read-lock [tr+1, tx. TS] if possible
10: try to acquire read-lock for tx on (k, t), waiting
if timestamp is write-locked but not frozen
11: if found frozen write-lock then
release read-locks acquired above; break » exit “for” loop
12: until found no frozen locks in the for loop
13: tx.PossTS « tx.PossTS N [tr, tmax] » update possible timestamps
14: return ir

—_

5: function COMMIT-LOCKS(tx)
16: for t € tx.PossTSdo  » Find a good timestamp. Loop order: first
tx. Pref TS then arbitrary for PossTS

17: gotlocks « true

18: for (k, tr) € tx.writeset do

19: try to write-lock for tx on (k, ), without waiting if a
timestamp is read-locked

20: if write-lock not acquired then

21: gotlocks «— false > this timestamp will not work

22: release all write locks for tx

23: break > exit inner “for” loop

24: if gotlocks then break » found a timestamp for which we can

get write locks; exit outer “for” loop

25: if gotlocks then tx.TS « t
26: else tx. TS « L

> found good timestamp
> no good timestamps

27: function commIT-Ts(T) return tx. TS

28: function comMMIT-GC(tx) return false

The pseudo-code of MVTL-Pref is given in Algorithm 3. We can
show that if we choose the alternative timestamps A(t) to be smaller
than the preferential timestamps ¢, then the resulting MVTL-Pref
algorithm aborts strictly fewer workloads compared to MVTO+.
More precisely, we have the following:

THEOREM 2. Suppose thatVt' € A(t),t’ < t. (a) If a workload W
produces no abort under MVTO+, then W produces no abort under
MVTL-Pref. (b) There are infinitely many workloads that produce no
aborts under MVTL-Pref but produce aborts under MVTO+.

5.2 The prioritizer algorithm

Multiversion timestamp ordering provides no way for critical trans-
actions to be prioritized over normal transactions. We explain how
MVTL can do that, by using a policy that gives more locks to critical
transactions. There are many ways to do that, but the simplest one
is as follows. Normal transactions obtain their locks as in multiver-
sion timestamp ordering using synchronized clocks, while critical
transactions try to acquire all locks as in pessimistic concurrency
control except that critical transactions do not block waiting for any
of its locks. Both types of transactions garbage collect on commit.
We give the detailed pseudo-code of the algorithm in the full paper.

THEOREM 3. In the MVTL-Prio algorithm, transactions labeled
critical are never aborted by transactions labeled normal.

Given that high-priority transactions behave similarly to pes-
simistic concurrency control, they can cause deadlocks. However,
transactions with normal priority behave identically to those in
MVTO-+, and thus never cause deadlocks.

5.3 The e-clock algorithm

Multiversion timestamp ordering uses clocks to obtain its times-
tamps, but if clocks are not synchronized or monotonic!, it is sus-
ceptible to serial aborts—aborts that occur in an execution that is
completely serial. This is a concern in modern multicore machines
that do not guarantee that clocks across cores are perfectly syn-
chronized. For example, T; gets timestamp 2, reads an object X, and
commits. Afterwards, T; gets a smaller timestamp 1, writes X, and
tries to commit. This will cause T; to abort since the read-timestamp
of X at version 0 is 2. This is the schedule:

T,: R(XX) C

T : W(X) A

Here, time flows to the right and each line shows the operations
of a transaction. R, W, C, and A indicate a read, write, commit, and
abort; and X is the key. Thus, this schedule has two transactions Ty
and Ty, where T reads X and commits, and then T; writes X and
aborts.

The MVTL-e-clock algorithm, which we now introduce, avoids
serial aborts when used with e-synchronized clocks. Briefly, when
it starts, a transaction reads the clock, obtains a time ¢, and for
each read and write tries to lock the interval [t—e, t+€]. At the end,
it commits at the smallest common timestamp it locked for every
accessed object. Before completing the commit, the transaction runs
garbage collection. Algorithm 4 shows the detailed pseudo-code.

In a sequential execution, it is possible to show that tx picks a
commit timestamp that is at most ¢, and thus it releases the lock on
higher timestamps. As a result, the next transaction in the sequence
will always have its own real time in the intersection of locked
timestamps, and therefore does not abort.

THEOREM 4. The MVTL-e-clock algorithm is not susceptible to
serial aborts when clocks are e-synchronized.

! A monotonic clock is one that ensures that it returns a higher timestamp if it is
queried later in time. Monotonic clocks and time-synchronized clocks are equivalent
for the purposes of this discussion.



Algorithm 4 The MVTL-e-clock algorithm

1: function INITIALIZATION(tx)
2 now « clock()
3: tx. TS « [now — €, now + €]
4: function WRITE-LOCKS(tx, k)
5 try to write-locks for tx on (k, tx.TS), waiting
if a timestamp is read- or write-locked but not frozen

6: tx. TS < write-locks that tx could acquire
7: function READ-LOCKS(tx, k)
8: if tx.TS = 0 then return L
9: m < max tx. TS
10: repeat
11: tr < max{t : ¢t < m and Values[k, t] # L}
12: for ¢t = tr+1 to m do > read-lock interval [tr+1, m] if possible
13: try to acquire read-lock for tx on (k, t), waiting
if timestamp is write-locked but not frozen
14: if found frozen write-lock then
release read-locks acquired above; break » exit “for” loop
15: until found no frozen locks in the for loop
16: tx. TS « tx. TSN [tr+1, m]
17: return ir

18: function COMMIT-LOCKS(tx) return
19: function commIT-Ts(T) return min T

20: function coMMIT-GC(tx) return true

5.4 Existing algorithms as special cases

We now show that MVTL generalizes two popular transactional
algorithms, MVTO+ and pessimistic concurrency control. More pre-
cisely, we give two algorithms MVTL-TO and MVTL-Pessimistic,
which specialize MVTL and behave exactly like MVTO+ and pes-
simistic concurrency control, respectively.

In MVTL-TO, each transaction obtains a timestamp ¢ from a clock
when the transaction starts. Writes do not lock anything, reads try
to lock [tr+1, t] (waiting for unfrozen locks) where tris the largest
timestamp before t for which Values[k, tr] # L1, and commits lock ¢
for each object in the transaction’s write-set. Garbage collection is
not invoked on commit. We give the detailed pseudo-code of the
algorithm in the full paper.

THEOREM 5. The MVTL-TO algorithm behaves as the MVTO+
algorithm.

Pessimistic concurrency control locks objects before accessing
them, to prevent conflicting operations from executing concur-
rently. To emulate pessimistic concurrency, the MVTL-Pessimistic
algorithm works as follows. Writes acquire write locks on all times-
tamps (blocking), while reads acquire read-locks on all timestamps
in [tr+1, oo] (blocking). Garbage collection is invoked on commit.

THEOREM 6. The MVTL-Pessimistic algorithm behaves as the pes-
simistic concurrency control algorithm.

5.5 The ghostbuster algorithm

Under multiversion timestamp ordering, a transaction may abort
and later create a conflict with another transaction, causing it to
abort. For example, suppose that T; starts with timestamp 1, T»
starts with timestamp 2, and T3 starts with timestamp 3. Then T3
reads X and commits, Ty reads Y, writes X, and tries to commit with
its timestamp 2, but T aborts because T3 read X with timestamp

3. Next T; writes Y and tries to commit but aborts due to the read
by T». This is a ghost abort, because the write of T; has a conflict
with a transaction T, that had aborted before the write of T; started.
This is the schedule:?

T;: R(X) C

T : R(Y) W(X) A

T : w(y) A
We define ghost aborts precisely in the full paper.

While multiversion timestamp ordering has ghost aborts, MVTL-
Ghostbuster can avoid that. MVTL-Ghostbuster is a simple mod-
ification to the MVTL-TO algorithm (§5.4): when a transaction
commits, it performs garbage collection. This ensures that transac-
tions that abort do not leave behind locks that cause ghost aborts.
We thus have the following:

THEOREM 7. The MVTL-Ghostbuster algorithm is not susceptible
to ghost aborts.

6 PRACTICAL CONSIDERATIONS

Reducinglock state space. When we presented the generic MVTL
algorithm, we defined a lock for each timestamp and object, which
amounts to an infinite lock state space. We did not include mecha-
nisms to compress this information, because they are orthogonal to
the essence of the algorithm. However, a practical implementation
should compress the lock state. To do so, we observe that MVTL
algorithms usually acquire and release locks on a small number of
points or contiguous intervals (this is true for all MVTL algorithms
in this paper). Rather than keeping a lock state for each timestamp,
an implementation can keep a single lock state for an entire interval.
In the algorithms we presented, each object holds at most one lock
interval per committed transaction. We evaluate the amount of lock
state in §8.4.5. Furthermore, this state can be discarded when the
associated version of the object is purged, as we discuss next.

Purging versions. By nature, a multiversion algorithm keeps mul-
tiple versions of each object. Doing so is feasible as storage prices
fall. Disk systems such as database systems already use multiversion
algorithms, but even memory systems can do so now. Neverthe-
less, multiversion algorithms need a way to purge old versions so
that each object holds few versions—possibly just one after write
activity on the object quiesces. We now explain how this can be
done in MVTL. This is easy: at any time, the system can purge
any version older than the latest committed one, without affecting
the correctness of the algorithm. Transactions that need purged
versions will abort, so in practice we purge versions older than a
time limit chosen based on the duration of the longest expected
transactions. In some MVTL algorithms, there is a lower bound on
the timestamps that a transaction locks (e.g., e-clock algorithm);
we can purge versions with timestamps below the bound except
the last one before the bound, without causing any side-effects. We
evaluate the effectiveness and cost of garbage collection in §8.4.5.

Removing the atomic block. Algorithm 1 has an atomic block in
lines 17-19, to avoid partially exposing the writes of a committing
transaction when we assign to the array Values[k, t]. We can remove
?Here, transactions get a timestamp before their first operation, but one can construct

a more complex schedule with the same problem even if transactions get a timestamp
at the first operation.



this atomic block by (1) first storing a special value in Values[k, t]
for all timestamps in the for loop, (2) then storing the actual value v
for all timestamps in the loop, and (3) having other processes wait
if they read Values and see the special value.

7 DISTRIBUTED MVTL ALGORITHM

The MVTL algorithm of §4 works in a single machine, where mul-
tiple threads share lock state and data versions. We now explain
how to extend that algorithm to distributed transactions, where
clients in different machines execute transactions over the same
data set. More precisely, the system consists of a set of clients who
want to execute transactions, and a set of storage servers who keep
the data, where clients and servers can be in different machines
connected by a network. The data is partitioned across the servers
by its key, and clients know how to find the server responsible for
a key (e.g., by hashing the key or using a configuration map).

The basic idea of the distributed algorithm is that servers hold the
state that is shared across clients: locks and data versions. Clients
contact the servers to execute the steps of the algorithm in §4 that
involve this state. More precisely, the server responsible for a key
k keeps all versions and locks for k. A client contacts that server
when it wishes to read k, create a new version for k, or manipulate
k’s lock state (obtain, freeze, or release locks on timestamps).

The system is subject to failures that may disrupt the algorithm.
A failed client may leave write locks in an unfrozen state indefinitely,
causing other transactions to block. A failed server can similarly
cause indefinite waiting from clients.

To address these problems, we associate a commitment object
with each transaction. This object solves consensus on the outcome
of a transaction, which can be “abort” or “commit with a timestamp
t”, ensuring that clients and servers all agree on the outcome. The
details of the algorithm are given in the full paper.

8 EXPERIMENTAL EVALUATION

We conduct a simple experimental evaluation of MVTL to answer
some questions: Does MVTL enhance transaction concurrency and
avoid aborts compared to alternatives? Does MVTL improve trans-
action throughput? On which workloads? Do the characteristics
of the environment impact our conclusions? Does MVTL incur
significant overheads in terms of state size?

To this end, we implement the distributed MVTL algorithm (§7)
with a variant of the e-clock algorithm (§5.3). In this variant, to
execute a transaction T, a client obtains a timestamp ¢ from its local
clock and associates a timestamp interval I = [¢,¢ + A] with T,
where A is a small constant (we pick A = 5ms in the experiments).
When accessing a key k, the client tries to lock the timestamps
in I for key k. If the client cannot lock the entire interval I, but
manages to lock some subinterval, then the client replaces I with
that subinterval to reduce the amount of locking on subsequent
keys. We call this algorithm MVTIL. This is similar to the e-clock
algorithm but we do not assume that clients have synchronized
clocks and we shrink I when clients fail to obtain some locks, as
described above. We consider two variants of MVTIL: (i) MVTIL-
early, which at commit time picks the smallest timestamp in I to
commit, and (ii) MVTIL-late, which picks the largest. We compare
MVTIL to 2PL and MVTO+.

8.1 Implementation details

Keys and values are small strings of eight characters. Clients are
multi-threaded, each thread running a different transaction. When
a client realizes that an ongoing transaction will abort (because it
does not have a single timestamp locked across all accessed keys),
it has the option of aborting or restarting the transaction, with
an interval I adjusted based on the state it has already seen at
the servers. Servers are multi-threaded, with hundreds of threads,
each responsible to handle a client request. A server stores version
and lock state in a hash table indexed by key; for each key, the
hash table stores two skip lists, one for version state, one for lock
state. The version state is a list of value-timestamp pairs ordered
by timestamp. The lock state is a list of timestamp-timestamp pairs
representing a locked time interval, ordered by the first timestamp.
To coordinate access across threads, we use a concurrent hash table
(from the Intel TBB library [14]), with a latch per entry in the hash
table. Latches are held while a thread changes the lock and version
lists of a key. We use Apache Thrift [2] for communication between
clients and servers,

A timestamp service periodically broadcasts a message with
a time T in the past, equal to the service’s current time minus a
constant K; we use K = 15s in the local test bed, and K = 60s in the
cloud test bed (§8.2). This message has two effects. First, it causes
servers to purge old versions of keys, namely versions that meet
two criteria: their timestamp is smaller than T and they are not the
most recent version of a key. If clients have ongoing transactions
that later try to access a purged version, those transactions are
aborted. However, because T is an old timestamp, there will be few
such transactions, if any. The second effect of broadcasting T is
that clients advance their local clocks to T if they are behind—this
ensures that clients with slow clocks do not start new transactions
that need purged versions and subsequently get aborted.

Our implementations of MVTO+ and 2PL use the same frame-
work, but run a different client protocol and keep a different server
state: 2PL stores a single readers-writer lock per key, while MVTO+
stores a single skip list per key containing versions and associ-
ated locks. The implementations of all schemes are available at
https://github.com/LPD-EPFL/MVTIL.

8.2 Test beds

We use two test beds for the experiments: a local test bed with
dedicated servers, and a public cloud test bed with virtual machine
instances. The local test bed represents an enterprise setting with
higher-performance machines and network, while the cloud test bed
represents a low-cost shared environment with a less predictable
network.

On the local test bed, we use three machines: (a) a server with
four 2.7 GHz Intel Xeon 12-core E7-4830v3 processors and 512 GB
of RAM,; (b) a server with two 2.8 GHz Intel Xeon 10-core E5-2680
v2 processors and 256 GB of RAM; and (c) a server with four 2.1
GHz AMD Opteron 6172 12-core Processors and 128 GB of RAM.
Machines are connected by a 1 Gbps network.

The public cloud test bed consists of several hundred Amazon
EC2 t2.micro instances with 1 vCPU each.
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Figure 1: Effect of concurrency level on performance, local
test bed.
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Figure 2: Effect of concurrency level on performance, cloud
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8.3 Experiments

In an experiment, clients submit transactions repeatedly in a closed-
loop. We measure the aggregate throughput of committed trans-
actions and the commit rate, which is the fraction of transactions
that commit. Before measuring, we run a warm-up stage of 40s to
ensure all clients have started; we then measure the system for 20s.
We repeat each experiment five times and report the average.

In each experiment, we fix the following parameters:

algorithm (MVTIL, MVTO+, 2PL);

number of clients, which determine the level of concurrency;
size of transactions in number of operations;

fraction of write operations in a transaction;

size of the key space; and

number of storage servers.

On the local test bed, which has three machines, we always run
three servers on all machines, and we run client threads on a subset
of the cores in those machines. For the cloud test bed, we run eight
servers on eight different VM instances unless otherwise indicated,
and we run each client on its own VM instance.

8.4 Results

We now present results regarding concurrency, fraction of write
operations, transaction size, number of servers, and state size.

8.4.1 Level of concurrency. We study the effect of the level of
concurrency on performance, under a workload where a majority
of operations are reads—a common situation in practice. We vary

the number of clients, while keeping the other parameters constant.
We use transactions with 20 operations, 25% of which are writes.

For the local test bed, we use 10K keys. For the larger cloud test
bed, we use 50K keys.

Figures 1 and 2 show throughput and commit rates for the local
and cloud test beds, respectively. We see that MVTIL outperforms
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Figure 3: Effect of fraction of writes on performance.
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Figure 4: Effect of small transaction size on performance.

MVTO+ and 2PL in both test beds. Moreover, when concurrency
increases, the commit rate of MVTO+ drops due to conflicts, but
this does not happen for MVTIL because it can commit at many
serialization points. The inefficiency—due to aborts in MVTO+ and
waiting for locks in 2PL—is the reason for the difference in through-
out. This is more pronounced in the cloud test bed, where resources
are scarce: there, MVTIL has roughly 2x better throughput than
the alternatives. The difference is smaller on the local test bed.

The commit rate for 2PL is not 100% because transactions abort
after a timeout. This prevents deadlocks and starving transactions
from limiting throughput. We set the timeout value to maximize
throughput.

8.4.2 Write percentage. We next consider how the fraction of
writes affect performance. We thus vary the fraction of writes and
keep other parameters constant. We use the local test bed with 90
clients; transactions have 20 operations and 10K keys.

Figure 3 shows the results. For read-only transactions, the choice
of protocol has little impact. Additionally, for write fractions close
to 1, the workload consists mostly of blind writes, which allows
multiversion protocols to commit nearly all transactions, as writes
in such protocols do not conflict with each other. With a more
balanced write fraction, MVTIL outperforms MVTO+ and 2PL. With
2PL, the more writes, the more time transactions wait for locks.
MVTO+ has a high abort rate when the percentages of reads and
writes are similar; this is where the chance of conflicts is highest
in multiversion protocols. The issue impacts MVTIL less due to its
ability to explore many serialization points to commit.

8.4.3 Transaction size. In previous experiments, we use trans-
actions with 20 operations; we now consider smaller transactions
with 8 operations. We vary the number of clients (level of concur-
rency) and observe the performance. We use the local test bed with
a 50% fraction of writes and 10K keys.

Figure 4 shows the results. Under low concurrency, MVTIL be-
haves similar to MVTO+ and 2PL, but 2PL is ~5% faster. This setting
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with little concurrency, short transactions, and a local test bed with
lots of resources is the only setting where MVTIL is worse than
an alternative. However, as we increase concurrency, MVTIL again
outperforms the others. This advantage is larger in the cloud test
bed (not shown).

8.4.4 Number of servers. We now consider how the number of
servers affect performance. Using the cloud test bed, we keep the
number of clients constant to 400 and vary the number of server
instances from 1 to 20. We use transactions with 20 operations with
25% or 50% writes, and 100K keys.

Figure 5 shows the results. The throughput of all protocols in-
creases with the number of servers, but the scalability is better for
MVTIL. MVTIL has a higher commit rate compared to MVTO+,
and waits less for locks compared to 2PL; this is particularly visible
with 50% writes.

8.4.5 State size. We now examine the size of the state kept
by each algorithm, and the effectiveness of the garbage collection
mechanisms. Most of the state of a multiversion protocol is the
data versions and associated locks. We measure how the number
of versions and locks evolve with time for MVTIL and MVTO+
without garbage collection, as well as MVTIL with garbage collec-
tion (MVTIL-GC) that activates every 15s to purge versions and
locks. We use 50 clients running transactions with 20 operations, a
fraction of 50% writes, and 8K keys, running on the local test bed.

Figure 6 shows the results. Without garbage collection, the state
increases linearly with time. However, with garbage collection, the
state size remains bounded in both the number of versions and locks.
On average, there are ~4 versions and ~20 locks per key. Figure 7
shows how performance varies as time passes. Without garbage
collection, throughput decreases after ~5 minutes for MVTIL and
MVTO-+, because a larger state makes it slower to search for and
access versions. Garbage collection removes this performance degra-
dation. Moreover, comparing the performance with and without
garbage collection at the beginning of the experiment, we see that
the overhead of garbage collection is small.

8.5 Summary

We see that (i) with moderate contention, MVTIL outperforms al-
ternatives, (ii) with no contention, MVTIL is at least as good as
alternatives, and (iii) MVTIL’s advantages are bigger in the cloud
test bed that has limited processing power and unpredictable net-
work latencies. MVTIL nevertheless represents just one of many
MVTL-based algorithms. We believe that other MVTL algorithms
will present different benefits on other workloads and environ-
ments.
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9 RELATED WORK

The main novelty of this work is the idea of locking individual
timestamps, leading to a genre of multiversion algorithms called
MVTL. No other work has proposed this idea, but because MVTL
is a broad class, several existing algorithms become special cases of
MVTL, leading to similarities in mechanism.

Multiversion concurrency control is an old idea [6] that has seen
a resurgence in software transactional memory (STM) systems, sev-
eral of which provide serializability [3, 7, 11, 15, 16, 20, 22—24]. Prior
work in this space falls into three categories: (1) multiversion for
read-only transactions, (2) conflict graph schemes, and (3) multiver-
sion timestamp ordering algorithms. The first category [11, 22-24]
are systems that use multiversion to benefit solely read-only trans-
actions; update transactions rely on optimistic methods that, upon
commit, validate the read-set and abort if any object has changed.
While read-only transactions are important, these methods abort
under simple concurrent update schedules, such as the following
(where full multiversion schemes do not abort):

Ti: R(X) w(Y)
T : W(X)

The second category (e.g., [3, 16, 20]) are multiversion systems
that ensure serializability by detecting cycles in the conflict graph—
a data structure that represents the conflicts across transactions—
similarly to the MVSGT algorithm [26]. These algorithms have two
drawbacks: they are complex and they incur significant computa-
tion overhead, as reported in some of these papers.

The third category are systems that extend multiversion times-
tamp ordering. Specifically, Kumar et al. [17] explain how to provide
opacity, which is stronger than serializability. The algorithm suffers
from the same drawbacks of multiversion timestamp ordering that
we address in §5. It should be possible to extend MVTL to provide
opacity using the ideas of Kumar et al., but this is future work.



Lomet et al. [19] introduce the multiversion timestamp range
algorithm (MVTR). With MVTR, each transaction is assigned a
range of timestamps, and this range shrinks as the transaction exe-
cutes; at the end, MVTR commits if the range is non-empty. MVTR
differs from MVTL because MVTR locks entire objects instead of
timestamps. As a result, MVTR does not enjoy the full benefits of
multiversion concurrency control, such as allowing two concurrent
transactions to write the same object. Also, with MVTR one trans-
action manipulates the inner state of another transaction (e.g., by
changing the range that another transaction uses), which requires
careful synchronization of transactions using a scheduler or locks.
Elastic transactions [12], aimed at search data structures, use times-
tamp ranges to determine if a transaction can commit based on its
start time and when the accessed objects were written.

Snapshot isolation [4] is both an isolation property and a proto-
col. The protocol uses multiversioning and timestamps, similarly
to multiversion timestamp ordering, but it does not provide serial-
izability. Other protocols that use multiversioning and timestamps
provide even weaker notions than snapshot isolation [25].

Optimistic concurrency control (OCC) [18] is another technique
that can use multiversioning. With OCC, a transaction does not
acquire locks when executing; to commit, the system checks that
the versions that the transaction read are the latest. TicToc [28]
optimizes OCC to serialize transactions based on the data they
access. TicToc computes potential serialization points before the
validation and commit phases. Thus, a transaction for which the
read and write sets have been inspected might later abort. In con-
trast, MVTL ensures that once a serialization point has been found,
the transaction commits. Bohm [10] is a multiversion protocol that
pre-orders transactions before execution; in that sense, Bohm is
more pessimistic than MVTL, which determines transaction order-
ing dynamically during execution. In addition, Bohm requires that
the transaction be known ahead of time, and that its write-set be
static.

Many practical systems with distributed transactions provide
only snapshot isolation [9, 21] and abort on concurrent writes to the
same object. Spanner [8] provides strict serializability using two-
phase locking for read-write transactions, which limits parallelism.

10 CONCLUSION

This paper introduces a new genre of multiversion concurrency
control algorithms called multiversion timestamp locking (MVTL).
MVTL offers a new way to look at multiversion algorithms, based
on locking individual timestamps. With this perspective, we find
simple algorithms that improve the state of the art in different ways:
by committing successfully more workloads than existing multi-
version protocols, by avoiding the problems of serial aborts and
ghost aborts, and by offering prioritized transactions. We can also
view existing algorithms, such as MVTO and pessimistic concur-
rency control, as special cases of MVTL. We show how to realize
MVTL in both centralized and distributed systems. Finally, we show
experimental evidence of the benefits of MVTL in practice.

We believe that the algorithms proposed here are only a starting
point for other possibilities opened up by MVTL. The design of
other MVTL algorithms is a promising direction for future research.
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