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Abstract

The Distributed Computing Column covers the theory of systems that are composed of a
number of interacting computing elements. These include problems of communication and net-
working, databases, distributed shared memory, multiprocessor architectures, operating systems,
verification, Internet, and the Web.

This issue consists of the paper “A Pleasant Stroll through the Land of Infinitely Many
Creatures” by Marcos Aguilera. Many thanks to him for contributing to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including
in this column, including news and communications, open problems, and authors willing to write
a guest column or to review an event related to theory of distributed computing.

A Pleasant Stroll through the Land of Infinitely Many Creatures

Marcos K. Aguilera 1

Abstract

Many distributed algorithms are designed for a system with a fixed set of n processes.
However, some systems may dynamically change and expand over time, so that the
number of processes may grow to infinity as time tends to infinity. This paper considers
such systems, and gives algorithms that are new and simple (but not necessarily effi-
cient) for common problems. The reason for simplicity is to better expose some of the
algorithmic techniques for dealing with infinitely many processes. A brief summary of
existing work in the subject is also provided.

1 Motivation

Many distributed algorithms are designed for a system with a fixed set of processes. These algo-
rithms often make use of the number n of processes and their identity. However, some systems may
dynamically change and grow over time, so that the number of processes does not remain bounded
by n. For example, a network may allow new nodes to be added, or an operating system may
allow new local processes to be created, where it may be desirable for the new local processes to
participate in the distributed system. In those cases, distributed algorithms are needed that can
work with a dynamic system that may have a growing set of processes—a growth that may tend
to infinity as time tends to infinity.
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This paper is about such systems with infinitely many processes [GK98, MT00]. These systems
are not merely a theoretical diversion; rather, the requirement that an algorithm work in such
systems forces the algorithm to be generic and have many nice characteristics. In fact, algorithms
for infinitely many processes have the following advantages over algorithms for n processes:

• They have no system size parameters to configure, and as a result they are more robust and
elegant. There is no need to predict bounds on the system size, or to reconfigure the bounds
once the predictions become obsolete (which is often a non-trivial task in a widely deployed
system). An interesting analogy here is the use of linked lists in place of vectors in programs,
to allow a data structure to grow without preset bounds.

• They automatically handle crash recovery of processes. A process that crashes and recovers
can join the algorithm simply by assuming a new identity. Therefore, the algorithm designer
need not worry about designing ad-hoc recovery procedures.

• They guarantee progress even if processes keep on arriving. In fact, algorithms for infinitely
many processes cannot be indefinitely delayed if new processes keep arriving as the algorithm
tries to make progress. This is particularly important in extremely loosely-coupled systems,
like peer-to-peer systems, where there is a large number of nodes that come and go all the
time.

In addition to these motivations, from a conceptual viewpoint, it is important to investigate
if knowledge of the system size, or of eventual absence of system growth, is inherently needed
for algorithmic design; or if such a knowledge can improve the performance of algorithms; or if
such a knowledge is merely an unjustified convenience for the algorithm designer. This type of
investigation requires the development of algorithms and lower bounds for systems with infinitely
many processes.

In this paper, my goal is to cover some basic algorithmic techniques to handle infinitely many
processes in shared memory systems. To do so, I selected a few important problems and present
some new solutions, which are considerably simpler than existing ones. My criterion for simplicity
is that an algorithm is simple if either it is relatively short, or it consists of a small number of
modifications to an algorithm that is widely understood. The hope is that simplicity can better
expose the underlying core techniques. The solutions in this paper are not the most efficient ones;
in fact, efficiency requires an additional set of techniques—not covered here—that sometimes get
in the way of understanding the basics.

What is a system with infinitely many processes?

There are three ways in which infinitely many processes can occur in a model: across runs, along
a run as time passes, or instantaneously in a run. More precisely, we have the following models:

• (Model Mn
1 ) The system has a finite number n of processes. This is the traditional model,

where n may be used by algorithms. This model is called the n-arrival model.

• (Model M2) The system has infinitely many processes, but each run has only finitely many.
Therefore, there is no bound on the number of processes for all runs: for every N , there
are runs with more than N processes. There is a bound on the number of processes in each
run, but an algorithm does not know what is that bound because it varies from run to run.
The only guarantee is that for each run there is a time after which no new processes start
executing. This is the finite arrival model, and algorithms designed for it are called uniform
algorithms [GK98].
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Model Name Brief description

Mn
1 Traditional model or n arrival model System has n < ∞ processes.

M2 Finite arrival model System has ∞ processes, but each run only has finitely many.
M3 Infinite arrival model or

unbounded concurrency model
System has ∞ processes, processes may keep arriving forever.

M4 Infinite concurrency model Runs with ∞ processes taking steps concurrently (theoretical).

Mb
3 Infinite arrival model with

b-bounded concurrency
M3, but concurrency is at most b.

Mfinite
3 Infinite arrival model with

bounded concurrency
M3, but concurrency does not grow indefinitely.

Figure 1: Models for finitely and infinitely many processes.

• (Model M3) The system has infinitely many processes, runs can have infinitely many processes,
but in each finite time interval only finitely many processes take steps. The total number of
processes in a single run may grow to infinity as time passes. However, in any bounded time
interval, only a finite number of processes take steps. Intuitively, the source of infinitely is
the passage of time. This is the infinite arrival model or the unbounded concurrency model.
Unlike with uniform algorithms, algorithms designed for model M3 have the nice property
that progress may not be repeatedly postponed as new processes start executing.

• (Model M4) The system has infinitely many processes, runs can have infinitely many processes,
and a finite time interval can have infinitely many processes. Thus, an infinite number of
processes can take steps concurrently. This is the infinite concurrency model. This model is
of theoretical interest only, and it does not seem to capture existing physical systems.

The literature also has variants of model M3 that considers departures of processes. Roughly
speaking, a process that departs is no longer active and it does not take part in the algorithm. The
concurrency at a given time is the number of active processes at that time, that is, the number of
process that have joined (arrivals) minus the number of departures. Based on concurrency, there
are two variants of M3:

• (Model M b
3) Consists of model M3, with the additional restriction that every run has a

maximum concurrency bounded by constant b, which is known to algorithms. Therefore, in
model M b

3 , it is possible to have infinitely many processes only if processes depart at the same
rate that new processes join. This is the infinite arrival model with b-bounded concurrency.

• (Model Mfinite
3 ) Consists of model M3, with the additional restriction that each run has a

maximum concurrency that is finite. This is the infinite arrival model with bounded concur-
rency.

Figure 1 shows all the models and their usual names, and Figure 2 shows their relationship.
In this paper I focus on algorithms for model M3, which is very general: algorithms for M3

also apply to all other models except M4. In model M3, I show how processes can acquire unique
names, how they can count together, how they can take atomic snapshots of memory, how they
can find the other active processes, and finally, how they can solve mutual exclusion. At the end of
the paper, I show how the model M3 itself can be implemented, and give a brief summary of other
work, including work on the other models of infinitely many processes.
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Figure 2: Inclusion relationship between models.

N = {1, 2, . . .}; R is the set of real numbers; i..j is the set of integers from i to j, inclusive; [x, y] is the closed interval
of real numbers between x and y; a sequence is a function with domain N; an array A is a set of pairs (index , value),
and A[index ] indicates the value associated with index; if there are no such values, A[index ] = ⊥.

Figure 3: Notation used in this paper.

Bibliographic notes

Model M2 was proposed by Gafni and Koutsoupias [GK98], who were the first to consider a system
with infinitely many processes. Models M3, M4, M b

3 , and Mfinite
3 were proposed by Merritt and

Taubenfeld [MT00], who were the first to consider a system where runs can have infinitely many
processes. Many techniques presented in this paper were first introduced by Gafni, Merritt and
Taubenfeld [GMT01].

2 Informal modeling

Some standard notation is given in Figure 3. We consider an asynchronous distributed system with
a set Π = N of processes that can communicate through a shared memory. The shared memory
has a set of registers or memory locations that support atomic read and write operations, with the
usual semantics. The registers are multi-writer multi-reader: they can be accessed by any process
in the system. Sometimes we consider a memory that supports test-and-set, which sets a location
to 1 and returns its previous value.

Each process is an automaton, possibly with infinitely many states, that computes by taking
steps. The system is asynchronous, that is, the next step of a process may occur after an arbitrarily
long time. In each step, a process performs the following, in order: (1) either issue an output event,
or read from shared memory, or write to shared memory, or none of the above, (2) possibly receive
an input event, and (3) change state. The model has time that ranges over R. This time is not
accessible to processes; it is merely a technical convenience. A step includes a timestamp to indicate
when it happens, and a process to indicate who takes the step. A run R is a countably infinite
set of steps with distinct timestamps. A process in R is a process that has a step in R. We define
models Mn

1 , M2, and M3 (we do not try to define M4). In Mn
1 , all processes of every run are in

1..n. In M2, every run has only finitely many processes. In M3, a run may have infinitely many
processes. In Mn

1 , M2, M3, a run has only finitely many steps with timestamp smaller than x for
every x ∈ R. Thus, if we order steps by increasing timestamp, we get a sequence.

A process may receive an input event with an operation invocation, that is, a request to execute
an operation O. Later, the process may issue an output event with the response for O. Input events
can happen at any time, except that a process will not receive two invocations without first issuing
a response in between: intuitively, a process does not receive concurrent invocations. We say that
operation2 O is active at a given time if a process has received an invocation for O but has not yet

2In this paper, we are sloppy about the distinction between operations and their execution.
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output a response. We say that a process is active if it has an active operation; else the process is
inactive. An inactive process continues to take steps, but it cannot issue output events, or read or
write memory; intuitively, this prohibits background activities. The concurrency at time t is the
cardinality of the set of active processes at time t. The point contention of an operation O is the
largest concurrency from the time of O’s invocation until its response.

A process that has taken steps may fail by crashing, in which case it stops taking steps. A correct
process is one that takes infinitely many steps. An algorithm is wait-free [Her91] if it guarantees
that correct processes always complete their operations (in a finite number of steps).

Linearizability [HW90] is a standard way of defining the concurrent behavior of an object from
its sequential specification; roughly speaking, it requires that an operation appear to take place
at some instantaneous time between its start and end. Linearizable objects are sometimes called
atomic objects.

Finally, runs must conform with the automaton defined for each process (no byzantine failures)
and with the semantics of read and write of shared memory.

3 Our first algorithm: naming the anonymous

To gain some understanding of the models for infinitely many processes, consider the problem of
naming, where processes are all initially anonymous and execute the same code, and they must
eventually output an identifier such that no two processes output the same identifier. Even in
the traditional model Mn

1 , this problem has no solution with a memory that only supports read
and write operations3. Thus, to solve naming, let us assume that the memory has a test-and-set
operation. Figure 4 shows a very simple algorithm, which uses an array of bits to indicate if a
name is taken; a process uses test-and-set to iterate through the array to grab a name that is not
yet taken.

This algorithm works well in model Mn
1 , and even in model M2, where each run has only

finitely many processes, so that every correct process eventually finds a name and terminates.
Unfortunately, in model M3, a correct process p may execute forever because, just before p grabs
some name i, a new process may start and execute very quickly so that it grabs name i before p.
This can keep on happening forever because, in model M3, new processes may keep on arriving.

This type of liveness problem is essentially what distinguishes model M3 from M2: in fact, any
algorithm A (for any problem) that works in M2 can only fail in M3 by violating liveness, and only
if new, distinct processes keep appearing. This is because, if A were to violate safety in M3 at some
time t, then we can prevent all new process arrivals after time t, and get a run in M2 that also
violates safety, contradicting the fact that A works in M2.

In some sense, a similar problem occurs in the design of wait-free algorithms for Mn
1 , when

incoming operations may keep delaying a starving operation. In M3 the problem is exacerbated,
because new operations may originate from distinct processes, which affects the helping mechanisms,
as we discuss in Section 4. Here, helping mechanisms do not apply because there are no process
identifiers, so we need a different approach.

Our solution is based on the observation that if we limit the number of processes that are racing
with p then p will not starve. One way to do so, shown in Figure 5, is to use (infinitely) many
copies of the algorithm in Figure 4, and ensure that each copy is executed by only finitely many
processes. When a process p executes, it picks one copy to “enter”; when p finishes executing that
copy, it chooses as its name the value 〈i, j〉 where i is the copy number, and j is the name within the

3Intuitively, this is because processes may always execute in tandem, in a way that their computation never
diverges from each other [HS80, JS85].
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Shared variables: used[1..∞], initially all 0

procedure get-name()
1 j ← 1
2 while test-and-set(used[j]) = 1 do
3 j ← j + 1
4 name ← j

Figure 4: Wait-free algorithm for naming for
model M2 with test-and-set.

Shared variables:
used[1..∞][1..∞], initially all 0
currentcopy, initially 1

procedure get-name()
1 i ← currentcopy
2 currentcopy ← i + 1
3 j ← 1
4 while test-and-set(used[i][j]) = 1 do
5 j ← j + 1
6 name ← (i, j)

Figure 5: Wait-free algorithm for naming for
model M3 with test-and-set.

copy. The copy chosen is the value of shared register currentcopy, which then p increments. The
chosen names are pairs 〈i, j〉, but it is easy to convert them into natural numbers with an injection
f from N × N to N, such as the one obtained by walking through each diagonal of N × N.

Informal correctness argument

In a run, the value of currentcopy may bounce up and down a few times, but we show that it is
impossible for an infinite set processes to read the same value from currentcopy. More precisely,
to show correctness, we say a process enters copy k if it executes line 2 with i = k. We show by
induction on k that only finitely many processes enter copy ≤ k. For k = 1, after some process
executes line 2, say at time t, currentcopy forever after has a value ≥ 2. Therefore, only processes
that execute line 2 before time t—a finite number in model M3—will enter copy 1, which shows
the induction hypothesis. For the induction step, assume that only finitely many processes enter a
copy ≤ k, and let t1 be the latest time when this happens. If no processes enter copy k + 1 after
time t1, then the induction step holds. Else, at some time t2 > t1, some process enters copy k + 1.
From time t2 onward, we have currentcopy ≥ k + 2, because currentcopy can only be set to a value
≤ k + 1 if a process enters a copy ≤ k. Thus, only processes that execute line 2 before time t2—a
finite number—will enter a copy ≤ k + 1, which shows the induction step.

Since only finitely many processes enter each copy, termination is always guaranteed, even in
model M3.

Further reading and bibliographic notes

The idea in Figure 5 of using multiple copies of a data structure to bound concurrency was inspired
by the sieve construction by Attiya and Fouren [AF03]. Although naming has no solutions with
only registers, Aspnes et al [ASS02] show that probabilistic naming—where processes only need to
obtain distinct names with high probability—is possible in model M b

3 with only registers and coin
tosses. For M3, it is shown that even this weaker naming is impossible with a strong adversary, i.e.,
an adversary that can schedule processes according to their state. Merritt and Taubenfeld [MT00]
show that there is no wait-free algorithm for naming using only test-and-set bit objects (no read
and write operations) in model M3.
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4 A helping mechanism for a simple problem

Henceforth we assume that each process has a unique identifier in N, and that memory supports only
read and write operations. When designing wait-free algorithms, a common problem is to prevent
a slow process from executing forever when other faster processes keep executing operations—
a problem that we already saw in Section 3. The so-called helping technique (e.g., [Her91]) is
frequently used to solve this problem, by having a process help other slower processes to finish
their operation. More precisely, whenever a process executes its own operation, it also checks if
other processes are also concurrently executing some operation and, if so, the process helps them
complete those operations. This technique has been extensively used in wait-free algorithms for
model Mn

1 and, as we show in this section, it also applies to model M3 after some difficulties are
solved.

The first difficulty is to determine whom to help: in model Mn
1 , a process can check if any of

the other n − 1 processes need help, but in M3, this checking is not possible because there is an
infinite set of candidates. If we only had a mechanism in M3 to tell who potentially has outstanding
operations at a given time, then our problem would be solved: a process can simply obtain such
a list—which will have a finite number of processes—and then help the processes in it. We will
ultimately show how to build such a list in Section 6, but until we do so, we have a chicken-egg
problem. This is because assembling the list needs to be done in a wait-free manner, and so we
would like to use a helping mechanism for that.

A second difficulty is that, even if processes know exactly whom to help, in M3 the helping
mechanism needs to be careful with the order in which it does things. For instance, it might be
tempting for processes to first (1) execute their own operation, and then (2) help other processes.
This can work in Mn

1 , but generally it will not in M3, because an infinite number of processes can
perform step (1) and then crash without performing (2): if that happens, a slow process will never
get any help. Therefore, in M3 a process should first help its peers before making data structure
changes that can delay them [GMT01].

Whom to help?

Going back to the first difficulty, how can a process p determine whom it will check for need of
help? First, note that p need not try to help everyone who has an outstanding operation: it can
leave out processes, as long as they are guaranteed to be helped by someone else. More precisely,
we would like to guarantee the following “check property”:

• For every process p, if there are infinitely many operations executed that change the data
structures, then infinitely many will check if p wants help.

One way to ensure the check property is to have the i-th operation execution of a process q
to check (for need of help) all processes whose identifiers are between 1 and i + q. To see why
this works, note that if there are infinitely many operations, then either (1) there is a process
that executes infinitely many operations, or (2) there are infinitely many processes that execute
operations. In both cases, any process p will be checked infinitely often.

There are also ad-hoc ways to ensure the check property, which are specific to the problem
being solved, as we show below.

Weak counters

Let us illustrate more concretely the high-level ideas explained so far, by building a relatively simple
data structure, which we call a weak counter. A weak counter supports two operations, get-count and
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Shared variables:
bit[1..∞], initially all 0
working[1..∞], initially all false
help[1..∞], initially all 0

Code for process p:

procedure increment()
1 n ← get-count()
2 bit[n + 1] ← 1

procedure get-count()
3 i ← 1
4 working[p] ← true
5 assist ← {}
6 while bit[i] = 1 and help[p] = 0 do
7 if working[i] then assist ← assist ∪ {i}
8 i ← i + 1
9 working[p] ← false
10 if help[p] �= 0 then return help[p]
11 else
12 for each q ∈ assist in increasing order do help[q] ← i − 1
13 return i − 1

Figure 6: One-shot wait-free algorithm for weak counters for model M3.

increment, which returns the current value of the counter and increments the counter, respectively.
The counter is weak because if multiple processes increment concurrently, the counter may only
increment by 1. In fact, the only thing we require is that the counter never go back and that
increment cause the counter to get a higher value. More precisely, a weak counter guarantees that
get-count returns a value in N such that

• Monotonicity: if get-count1 precedes get-count2 then get-count2 does not return a smaller
value than get-count1, and

• Weak increment: if get-count1 precedes increment, which in turns precedes get-count2, then
get-count2 returns a larger value than get-count1,

where we say that an operation precedes another if it ends before the other starts [Lam86a].
Figure 6 gives a wait-free algorithm for weak counters where each process may execute at

most one operation—a so-called one-shot implementation. We later remove this restriction. The
algorithm’s basic idea is to represent the value of the counter in unary in a bit array. To increment
the counter, a process reads its current value, and then sets one more bit to one. To read the
counter’s value, a process p scans the array to count the number of bits set to one; to ensure that p
terminates if the counter keeps increasing, we use a helping mechanism as follows. Before scanning,
p announces that it wants help by setting working [p] to true. A process q that scans beyond a value
i will remember who among processes 1..i wants help. Once the scan is over, process q helps those
found to be in need of help. A process that gets helped will not itself help other processes, because
its help may be stale. When executing increment, this help is performed before a new bit is set to
one. This is the place where the process helps before making a data change that may delay others.

To extend the algorithm for multiple uses per process, we can reserve a priori infinitely many
identities per process, and let the process use a new identity for each operation [GMT01]. More
precisely, if f is a injection from N×N to N, then we reserve identities f(p, 1), f(p, 2), . . . to process
p; upon executing its i-th operation, process p assumes identity f(p, i).

We can also extend the implementation to multiple operations per process in a more traditional
way. The problem with multiple operations is that a process p, upon executing a get-count, may
get bogus help from some slow process trying to help one of p’s previous operations, which can
cause violation of monotonicity. To solve this problem, we replace the help vector with a matrix,
where help[p][i] is the location to help the i-th operation of p. A vector current [p] keeps the count
of operations for each process p. When a process q adds p to assist, it remembers the value in
current [p], to know which entry in help[p][∗] to use. In this way, if q is slow so that p completes the
i-th operation, q’s subsequent stale help will not harm p’s operation.
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Proof of correctness (one-shot algorithm)

Definition 1 For any time t, let f(t) be the number of ones in vector bit at time t.

Lemma 2 Function f(t) is monotonically nondecreasing.

Proof: Trivial since entries of bit can only be changed from 0 to 1.

Lemma 3 If get-count returns n at time t then, at time t, bit[j] = 1 for every j = 1..n.

Proof: We first claim that if some process q executes get-count, then while help[q] = 0 we have
bit[j] = 1 for j = 1..iq − 1, where iq is the value of the i variable of q. This claim clearly holds
because of the guard of the while loop.

Now suppose that upon executing get-count, some process p returns n at time t. There are
two possibilities. (1) p returns in line 13. In this case, by the claim we have bit[j] = 1 for
j = 1..ip − 1 = n, which shows the lemma. (2) p returns in line 10. In this case, p returns
n = help[p] �= 0. The process q that previously set help[p] does so at some time t′ < t in line 12.
By the claim, at time t′, bit[j] = 1 for j = 1..iq − 1 where iq − 1 = help[p] = n. After being set to
1, a bit is never set to 0, so at time t we also have bit[j] = 1 for j = 1..n.

Corollary 4 At time t, if bit[i] = 1 then for any j in 1..i we have bit[j] = 1.

Proof: When a new bit[j] is set to 1 in line 2, by Lemma 3 all previous entries are also set to 1.

Corollary 5 At any time t, the f(t) entries of bit that are set to 1 are bit[1], . . . , bit[f(t)].

Lemma 6 Suppose a process p executes line 12 of get-count, and let t be the time when p previously
exits the while loop in line 6. Then the value of i − 1 during the execution of line 12 is f(t).

Proof: If p executes line 12, then p exits the while loop because it finds bit[i] = 0 at time t. By
Corollary 5 and the fact that bit[i − 1] = 1, at time t, i − 1 = f(t). Afterwards, p does not change
the value of i − 1, so the lemma follows.

Lemma 7 If get-count is called at time t and get-count returns, then it returns a value that is at
least f(t).

Proof: Suppose some process p calls get-count at time t and returns a value n at a time t1. Let
t2 be the time when p leaves the while loop. Then t ≤ t2 ≤ t1. Now p either returns in line
10 or 13. If p returns in line 13, then by Lemma 6, p returns n = f(t2), and since t ≤ t2, by
Lemma 2, f(t) ≤ f(t2) = n, which shows the lemma. If p returns in line 10, then p returns a value
n = help[p] �= 0. Consider the process q that sets help[p] to n. Process q does so in line 12 at some
time that is on or before the time t′2 when q leaves the while loop. By Lemma 6 applied to q, at
time t′2, the value assigned to help[p] is n = f(t′2). Process q adds p to the set assist at a time
t3 ≤ t′2, and t3 is not before the time t4 when p sets working[p] to true, and t4 is not before the time
t when p calls get-count. Thus, we have t ≤ t4 ≤ t3 ≤ t′2, and so t ≤ t′2. By Lemma 2, f(t) ≤ f(t′2),
and since f(t′2) = n, we have f(t) ≤ n.

Lemma 8 If increment is called at time t1 and returns at time t2 then f(t1) + 1 ≤ f(t2).

Proof: Note that increment calls get-count. Let t3 be the time when this happens, and t4 be the
time when get-count returns. Let n be the value returned by get-count. By Lemma 7, n ≥ f(t3).
Since t3 ≥ t1, by Lemma 2, f(t3) ≥ f(t1). Due to line 2, and by Lemma 5, we have f(t2) ≥ n + 1.
Therefore f(t2) ≥ f(t3) + 1 ≥ f(t1) + 1.
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Lemma 9 If get-count1 precedes get-count2 then get-count2 does not return a smaller value than
get-count1.
Proof: Let t1 be the time when get-count1 returns, and t2 be the time when get-count2 starts.
Then t1 ≤ t2. By Lemma 3, get-count1 returns a value v1 ≤ f(t1). By Lemma 2, f(t1) ≤ f(t2). By
Lemma 7, get-count2 returns a value v2 such that f(t2) ≤ v2. Therefore v1 ≤ v2.

Lemma 10 If get-count1 precedes increment, which in turns precedes get-count2, then get-count2
returns a larger value than get-count1.
Proof: t1 be the time when get-count1 returns, t2 be the time when increment starts, t3 be the
time when increment returns, and t4 be the time when get-count2 starts. Then t1 < t2 < t3 < t4.
Let v1 be the value returned by get-count1 and v2 be the value returned by get-count2. Then we
have 1 + v1 ≤ 1 + f(t1) ≤ 1 + f(t2) ≤ f(t3) ≤ f(t4) ≤ v2 where the inequalities hold, respectively,
by Lemmas 3, 2, 8, 2, and 7. Thus 1 + v1 ≤ v2.

Lemma 11 The algorithm in Figure 6 implements a weak counter where processes can execute at
most one operation.
Proof: By Lemmas 9 and 10.

Lemma 12 The algorithm in Figure 6 is wait-free.
Proof: To show wait-freedom, suppose for a contradiction that some process p starts get-count
but never terminates. Then p loops forever in the while loop of lines 6–8. Therefore, for every i,
when p reads bit[i], p gets 1. Thus, infinitely many calls to increment terminate. Thus, infinitely
many calls to get-count terminate. There are two non-exclusive cases: (a) infinitely many get-counts
return at line 13, and (b) infinitely many get-counts return at line 10. In case (a), there exists some
process q such that (1) q starts get-count after p does, (2) q adds p to q’s assist set, and (3) q
executes lines 12–13 with i ≥ 2. Therefore, q sets help[p] to a nonzero value. Soon after, p exits
the while loop—a contradiction. In case (b), there are infinitely many processes q with identifier
q > p that get their help[q] set to non-zero. For each such q, let pq be a process that sets help[q]
to a non-zero value in line 12. There are infinitely many distinct pq processes, and so there exists
some pq′ that starts get-count after p sets working[p] to true. Then pq′ adds p to assist and, before
setting help[q′] to a non-zero value, pq′ sets help[p] to a non-zero value (since q′ > p and the for
loop in line 12 is executed by increasing order of process identifiers). Soon after, p exits the while
loop—a contradiction.

A trivial improvement to the algorithm

To avoid having get-count always scan all bits, we could try to keep the position of the last bit set in
a shared variable shortcut. We then create a fast-get-count that starts the scan at position shortcut;
it also does not perform the help in line 12. We modify line 13 so that the process sets shortcut
to i − 1 before returning. Within increment, we still call the original version of get-count (without
the shortcut), so that helping works. But the fast version can be used by a process that just wants
to read the counter. In this way, if increment operations stop, then eventually fast-get-count takes
only constant time.

Bibliographic notes

The technique of allocating infinitely many identifiers to each process in M3 to transform one-shot
algorithms into long-lived ones was first proposed and applied to the name snapshot problem by
Gafni et al [GMT01]. They were also the first to observe that, in model M3, it is important for
processes to “help first”.
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5 Taking snapshots and collecting values

Atomic snapshot [AAD+93] is a useful primitive to build distributed algorithms by allowing pro-
cesses to read data from multiple processes in an atomic manner, much like taking a snapshot of
memory. More precisely, each process has one reserved location to store data using an update oper-
ation, and processes can atomically read the values of all reserved locations using a scan operation.
To avoid returning infinitely large arrays in models M2 and M3, where there are infinitely many
reserved locations, we define that all locations are initially empty, and require scan to return only
the non-empty ones.

Figure 7 shows the classical atomic snapshot algorithm from [AAD+93], for the standard model
Mn

1 (in the code, recall that we represent arrays as set of pairs (index , value)). The basic idea4 is
that, to execute a scan, a process p repeatedly collects the values of all processes, hoping that two
consecutive collects will be equal, in which case a consistent snapshot is found (lines 7-8). If they
are not equal, then some process must have finished executing an update. If p keeps finding such
processes, then eventually one of them, say j, will have finished two updates. Therefore, the later
update must have began after p started the scan. Every update performs itself a scan, and stores
the resulting snapshot in a shared variable. Since the latter update began after p started the scan,
p can return the update’s snapshot as p’s own snapshot (line 11).

We can modify this algorithm to work in M3, by using the weak counters from the Section 4
to keep track of the largest process L to execute update, as follows: when a process p executes
update, it increments the counter until it is at least p. Then, the idea is that a collect only needs
to look at processes 1 to L, rather than an infinite number. The only subtlety is that, if L keeps
on increasing while a scan is executing, the scan might never find a process j that completes more
than one update: it is possible that every new update comes from a new process. To solve this
problem, note that if L increases during the scan due to a new process p, then p must have started
the update after the scan began. Therefore, the scan can simply return the snapshot associated
with p’s update, even though p has not executed two updates. The full algorithm is in Figure 8 (in
the code, if an index j is part of an array a, then a[j] = ⊥).

Informal correctness argument

We now show correctness of the algorithm in Figure 8. Consider a run with calls to scan and update.
We show how to choose a serialization point for each scan and update operation in the run. For
an update, its serialization point occurs when the process executes line 17. For a scan operation
S, we define its serialization point P (S) by induction. If S returns in line 8, P (S) occurs at the
beginning of the last loop iteration in line 4 before the process returns in line 8. If S returns in line
11, P (S) occurs at the serialization point P (S2) of the scan S2 whose value is returned in line 11.
We need to show that P (S2) occurs between the time t1 of S’s start and the time t2 of S’s end.
Clearly P (S2) is before time t2 because p reads S2’s value after S2’s value is written to r[j] in line
17, which occurs after S2’s execution (line 15). To see that P (S2) is after time t1, there are two
cases to consider. (1) If the return in line 11 occurs because j is in moved, then process j changed
r[j] twice between times t1 and t2: once causing p to add j to moved, and then once again because
p later finds j in moved in line 11. Now r[j] is only changed in line 17. Thus, S2’s execution, which
occurs in line 15 after the first change in line 17, must be after time t1. Hence P (S2) is also after
time t1. (2) If the return in line 11 occurs because j > ninit then (a) during execution of S there
is a time t′1 > t1 when j has not yet executed any updates (because j executes line 14 during an
update). Therefore, P (S2) is after time t1.

4This brief explanation is only a summary. For details, see the original paper [AAD+93].
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Shared variable: r[1..n], initially all ⊥
Code for process p:

Private variable: seq, initially 0

procedure scan()
1 moved ← {}
2

3 a ← {(j, r[j]) : 1 ≤ j ≤ n}
4 while true do
5

6 b ← {(j, r[j]) : 1 ≤ j ≤ n}
7 if for every 1 ≤ j ≤ n, a[j] = b[j] then
8 return {(i, a[i].data) : 1 ≤ i ≤ n and a[i] �= ⊥}
9 else for j ← 1 to n do
10 if a[j] �= b[j] then
11 if j ∈ moved then return b[j].snap
12 else moved ← moved ∪ {j}
13 a ← b

procedure update(data)
14

15 snap ← scan()
16 seq ← seq + 1
17 r[p] ← (data, seq, snap)

Figure 7: Classical wait-free algorithm for
atomic snapshot for model Mn

1 .

Shared variable: r[1..∞], initially all ⊥
Code for process p:

Private variable: seq, initially 0

procedure scan()
1 moved ← {}
2* n ← get-count(); ninit ← n
3 a ← {(j, r[j]) : 1 ≤ j ≤ n }
4 while true do
5* n ← get-count()
6 b ← {(j, r[j]) : 1 ≤ j ≤ n}
7 if for every 1 ≤ j ≤ n, a[j] = b[j] then
8 return {(i, a[i].data) : 1 ≤ i ≤ n and a[i] �= ⊥}
9 else for j ← 1 to n do
10 if a[j] �= b[j] then
11* if j ∈ moved or j > ninit then return b[j].snap
12 else moved ← moved ∪ {j}
13 a ← b

procedure update(data)
14* while get-count() < p do increment()
15 snap ← scan()
16 seq ← seq + 1
17 r[p] ← (data, seq, snap)

Figure 8: Modified wait-free algorithm for
atomic snapshot for model M3 (asterisks indi-
cate a difference from the previous algorithm).

We now show that operations return values consistent with their serialization points. This is
clear for updates, which return no value. For a scan S, if it returns in line 8, it clearly returns a
value consistent with its serialization point P (S) because there were no updates whose serialization
point is between the two preceding reads of array r. If S returns in line 11, a trivial induction show
that it also returns a value consistent with P (S), because S returns the same value as a previous
scan S2 with serialization point P (S2) = P (S).

To show wait-freedom, there is only one loop in all code, which is in scan. In this loop, the
value of ninit does not change. Thus, line 11 can only execute ninit times without returning, since
every time it does not return, some j ≤ ninit is added to moved. Therefore, if scan does not return
in line 11, after some finite number of steps, a[j] = b[j] for every j = 1..n, which ensures that scan
returns in line 8.

Further reading and bibliographic notes

The collect operation. Lines 2 and 3, and lines 5 and 6 of the algorithm in Figure 8 perform a
collect operation, used frequently in algorithms for model Mn

1 . In model Mn
1 , a collect operation

consists of reading one shared variable per process, one at a time. Thus, intuitively a collect
operation is a “non-consistent” version of snapshot, and we can take this to be the definition for
models M2 and M3. In these models, one can perform a collect operation by using weak counters
to keep track of the largest process identifier n to hold any data; in this way, processes can simply
read the shared values of processes 1..n. There is a more efficient algorithms that is adaptive (to
point contention), meaning that its running time depends not on the participants’ largest identifier,
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but rather on the point contention, which is the largest concurrency during the execution of the
operation. There is a vast literature on adaptive algorithms for the collect operation in model Mn

1 .
Gafni et al [GMT01] show how to modify one of these algorithms, by Afek, Touitou, and Stupp
[AST99], to work in M3, while retaining adaptiveness. By using this collect algorithm into an
adaptive algorithm by Afek et al [AST99], one obtains an adaptive snapshot algorithm for M3.

Renaming processes. In algorithms whose running time depends on the value of process
identifiers, it is desirable for identifiers to be relatively small. This can be achieved by renaming
processes; more precisely, a f(k)-renaming algorithm assigns unique names to processes, such that
if k processes participate then all names are in the interval 1..f(k). There are two variants of
renaming: one-shot and long-lived. The former only allows processes to get new names, while the
latter also allows processes to release and recycle names. There is a vast literature on adaptive
algorithms for renaming in model Mn

1 . For model M3, there is an adaptive algorithm for long-lived
renaming, obtained by modifying the algorithm by Attiya and Fouren [AF00] as shown by Gafni
et al [GMT01].

Name snapshot. Gafni et al [GMT01] propose an algorithm for name snapshot, a variant
of one-shot snapshot for process names. Roughly speaking, name snapshot has just one operation
name-snapshot() that outputs a list of processes that have called this operation; different processes
may not exactly agree on this list, but different lists are always related by inclusion. More precisely,
at any time a process i may start a name snapshot, and when it terminates it outputs a set of
processes Si, called the snapshot of i, such that the following properties hold:

• (Validity) The snapshot of i contains itself, that is, i ∈ Si

• (Total Ordering) Snapshots form an inclusion chain, that is, for any i and j either Si ⊆ Sj

or Sj ⊆ Si

• (Integrity) If j does not start by the time i terminates then j is not in the snapshot of i.

Note that Validity, Total Ordering and Integrity imply that if a process i terminates before j starts
then the snapshot of j contains i. Name snapshot can be used to get the standard atomic snapshot
by (1) having processes store their data in a shared variable, and (2) using the technique to reserve
infinitely many names per process. More precisely, to perform a update(d), a process p chooses a
new unique name p′, stores d in a variable data[p′], and calls name-snapshot(). To perform a scan(),
process p chooses a new name p′, stores ⊥ in variable data[p′], calls name-snapshot() and, for each
process q′ in the gotten snapshot, p reads data[p′]. Then, for each real name q that has a reserved
name q′ in the name snapshot, p looks for the most recent reserved name q′′ used by q with a non-⊥
value for data[q′′]. This is the value returned for q in scan().

6 Group membership: determining who is around

It might be useful to have a primitive that tells exactly who is present in the system in a consistent
manner, where “present” could be an application-specific meaning, such as actively executing an
operation that changes state, and “consistent” means intuitively that processes get atomic answers,
as we explain below. This functionality is provided by a group membership service (e.g., [Cri87,
Bir93, vRBC+93, ADKM92, KT91, EMS95, BDGB94]).

Group membership was initially defined and used in message-passing systems, but it can be
useful as well in a shared-memory system with infinitely many processes. Roughly speaking, group
membership provides three operations, join, leave, and get-view, all with no parameters. The first
two are used by a process to inform that it is present or not present, respectively; the get-view
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Code for process p:

Private variable: ops, initially 0

procedure join()
1 ops ← ops + 1
2 update(〈ops, true〉) (* 〈ops, ismember〉 *)

procedure leave()
3 ops ← ops + 1
4 update(〈ops, false〉) (* 〈ops, ismember〉 *)

procedure get-view()
5 snap ← scan()
6 set ← {j : snap[j].ismember}
7 version ← ∑

(j,data)∈snap data.ops

8 return (set, version)

Figure 9: Wait-free algorithm for group membership using atomic snapshot in model M3.

operation returns a pair 〈set , version〉, where set contains the set of processes that are present and
version is an indication of how many times the membership changed so far.

More precisely, the correctness condition for concurrent access is linearizability with the follow-
ing sequential specification: a get-view returns (1) the set of processes that previously called join
without having subsequently called leave, and (2) a counter that never decreases, and increases by
at least one every time that get-view returns a set that differs from the last one returned. Note that
condition (2) guarantees that if two calls to get-view return the same version, then they return the
same set.

Group membership has a trivial implementation using atomic snapshot (Figure 9): processes
use snapshot with a boolean variable to indicate whether they have joined or left. To maintain the
version number, processes count the number of join and leave operations that they performed, and
sum these values after a snapshot is taken.

Further reading and bibliographic notes
Group membership has been extensively studied in the context of message-passing systems (a survey
is provided by Chockler, Keidar and Vitenberg [CKV01]). In shared memory, the closest related
subject is the active set object from Afek, Stupp, and Touitou [AST99]. Roughly speaking, an
active set object supports join, leave and get-set operations that are similar to the operations in
group membership, but with weaker guarantees: get-set may not return a consistent view of the
set of processes (analogously to the collect operation when compared to atomic snapshot), and it
does not return version numbers.

7 Using information of who is around to achieve mutual exclusion

Mutual exclusion ensures that at most one of a competing set of processes gets access to a critical
region at a time [Dij65]. Crashes are not allowed. In this section, I show simple ways to solve
this problem in model M3, by using group membership. In particular, I show how to convert to
model M3 two popular mutual exclusion algorithms, namely, Dijkstra’s algorithm and the Bakery
algorithm.

7.1 Dijkstra’s algorithm

Figures 10 shows Dijkstra’s mutual exclusion algorithm [Dij65] for model Mn
1 . It is quite easy to

modify the algorithm to work in M3 by using group membership, as follows. (1) Before competing
for the critical region, processes call join if they have not yet done so previously. And (2) we
replace the loop over n processes in line 7 with a loop over the processes returned by the group
membership. The resulting algorithm is shown in Figure 11.
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Shared variables:
flag[1..n], initially all 0
turn, initially 1

Code for process p:

(trying region)

1

2 flag[p] ← 1
3 while turn �= p do
4 if flag[turn] = 0 then turn ← p
5 flag[p] ← 2
6

7 for j ← 1 to n do
8 if j �= p and flag[j] = 2 then goto 2

(critical region)

(exit)

9 flag[p] ← 0

(remainder region)

Figure 10: Classical Dijkstra’s mutual exclu-
sion algorithm for model Mn

1 .

Shared variables:
flag[1..∞], initially all 0
turn, initially 1

Code for process p:

(trying region)

1* if did not join yet then join()
2 flag[p] ← 1
3 while turn �= p do
4 if flag[turn] = 0 then turn ← p
5 flag[p] ← 2
6* view ← get-view()
7* for each j ∈ view.set do
8 if j �= p and flag[j] = 2 then goto 2

(critical region)

(exit)

9 flag[p] ← 0

(remainder region)

Figure 11: Modified Dijkstra’s mutual exclu-
sion algorithm for model M3, using group
membership (asterisks indicate a difference
from the previous algorithm).

The proof of correctness of the modified algorithm is very similar to the original algorithm’s. To
show that the critical region is accessed by at most one process, assume by way of contradiction that
two processes p and q could be simultaneously in the critical region at some time t, and consider
their last execution of lines 5–8 before entering the critical region. Then one of them, say p, executed
line 5 before the other, and so when q executes the loop in lines 7–8, it finds that flag[p] = 2 and
goes to line 2—a contradiction. To show progress, consider any time t when flag[turn] = 0 (such
as initially) and there are processes in the trying region. We show that some process eventually
enters the critical region after time t, which proves that the algorithm guarantees progress, because
after leaving the critical region, a process sets flag[turn] = 0. Suppose by way of contradiction that
no processes ever enter the critical region. We claim that some process eventually executes the
assignment in line 4. Indeed, if not then turn never changes, and so let T be its value. There are
two cases: either (1) process T is always in the remainder region after time t (it is not trying to
enter the critical section), or (2) process T tries to enter the critical section after time t. In case
(1), flag[T ] = 0 forever because a trivial invariant is that processes in the remainder region have
their flags set to 0. Therefore, a process in the trying region will execute line 4 and modify turn—a
contradiction that shows the claim. In case (2), process T will get past the while loop in line 3,
and other processes in the trying region will get stuck in the while loop. Therefore T does not find
any flags set to 2 in line 8, and enters the critical region—a contradiction that shows the claim.
So, some process eventually executes the assignment in line 4 after time t; consider the first time
t′ > t when that happens. An invariant is that from time t′ onward, flag[turn] �= 0: this is because
nobody changes its flag to 0, and a process p only changes turn to p if flag[p] �= 0. Therefore after
t′, the assignment in line 4 is executed only finitely many times, and the last time happens at some
time t′′ > t′ by some process p. Then forever after t′′, turn = p. Any process q that reaches line 5
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Shared variables:
number[1..n], initially all 0
choosing[1..n], initially all false

Code for process p:

(trying region)

1

2

3 choosing[p] ← true
4 number[p] ← 1 + maxq∈{1..n} number[q]
5 choosing[p] ← false
6 for each q �= p ∈ {1..n} do
7 wait until choosing[q] = false
8 wait until number[q] = 0 or

(number[p], p) < (number[q], q)

(critical region)

(exit)

9 number[p] ← 0

(remainder region)

Figure 12: Classical Bakery algorithm
for model Mn

1 .

Shared variables:
number[1..∞], initially all 0
choosing[1..∞], initially all false
View[1..∞], initially all (−1, {})

Code for process p:

(trying region)

1* if p has not previously executed join then join()
2* View[p] ← get-view()
3 choosing[p] ← true
4 number[p] ← 1 + maxq∈View [p].set number[q]
5 choosing[p] ← false
6* for each q �= p ∈ View[p].set do
7 wait until choosing[q] = false
8* wait until number[q] = 0 or

(View[p].version,number[p], p) < (View[q].version,number[q], q)

(critical region)

(exit)

9 number[p] ← 0

(remainder region)

Figure 13: Modified Bakery algorithm for model M3

using group membership (asterisks indicate a differ-
ence from the previous algorithm).

eventually also reaches line 8 and then goes back to line 2, because by assumption nobody enters
the critical section. After doing so, it sets flag[q] = 1 and, if q �= p, q loops forever in lines 3–4 with
flag[q] = 1. Therefore, forever after some time t′′′ > t′′, all processes but p are looping in lines 3–4
with flag[q] = 1. After time t′′′, p cannot be stuck in the while loop of line 3, and p will not find
flag[j] = 2 in line 8, so p eventually enters the critical section—a contradiction.

7.2 The bakery algorithm
Another popular mutual exclusion algorithm is the bakery algorithm [Lam74], shown in Figure 12,
whose nice feature is that it avoids process starvation, unlike Dijkstra’s algorithm. Each process
p first gets a numbered ticket greater than the one of other processes (line 4). Then p waits until
the processes with smaller tickets are finished (lines 6–8), and then p enters the critical region. It
is possible that two processes get the same number; in that case, they use their process identifiers
to break ties.

This algorithm can be easily modified to work in model M3 by using group membership, as
shown in Figure 13. A similar flavor of modification to the Bakery algorithm was proposed by
Afek et al [AST99] to produce an adaptive algorithm for Mn

1 . At the beginning of the algorithm,
processes call join() (if they have not done so already), and then get-view to get a list of potential
competitors for the critical region, which is used as the set of processes to check in the loop of
line 6. In line 8, the check takes into consideration not just the ticket number, but also the view’s
version number (we use lexicographic ordering for comparing tuples): intuitively, earlier views have
priority over later views. The reason for that is that two processes p and q may get the same ticket
number, but p may not know about the existence of q if q joins later. In this case, p will have a
smaller view version than q, so q lets p go first.
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To show that the critical section is accessed by at most one process, suppose by way of contra-
diction that two different processes p and q could be in the critical region at the same time t. For
r ∈ {p, q}, let vr and nr be the values of View[r].version and number[r] at time t, respectively. We
claim that (vp, np, p) < (vq, nq, q), which establishes a contradiction because we can just switch the
names of p and q (which are completely symmetric in the claim) and get the opposite inequality.
To show the claim, there are two cases: (a) q �∈ View[p].set or (b) q ∈ View[p].set. In case (a), q
executes join after p executes get-view, and so vp < vq, which shows the claim. In case (b), consider
the time t′ < t when p finished line 8 for q. Then at time t′ either (1) q had already assigned a value
in line 2, or (2) q had not. In case (1), we have vp ≤ vq, else p gets stuck in line 8. In case (2), let
v′q be the value of View[q].version at time t′. We have vp ≤ v′q and v′q ≤ vq since View[q].version is
monotonically nondecreasing. Thus, in both cases (1) and (2) we have vp ≤ vq. If vp < vq then the
claim follows. Now assume vp = vq, and consider the time t′′ < t when p finished line 7 for q. Then
at time t′′ either (1) q had already finished line 5, or (2) q had not executed line 3. In case (1),
the guard in line 8 ensures that (vp, np, p) < (vq, nq, q), which shows the claim. In case (2), when q
executes line 4, it picks nq > np because (a) vp = vq, and so get-view returns the same value for p
and q, and so the set returned includes both p and q, and (b) q sees np when it takes the maximum
in line 4. Since vp = vq and nq > np, it follows that (vp, np, p) < (vq, nq, q), and the claim follows.

To see that the algorithm guarantees progress, suppose by way of contradiction that the al-
gorithm blocks forever while there are some processes in the trying region. Note that the values
of View[p].version, number[p] and p are all integers bounded below by −1. Therefore, in the
whole run, some process p that gets blocked forever in the trying region has a smallest triple
(View[p].version,number[p], p). Then, any process q with a smaller triple does not get blocked in
the trying region, so q eventually has number[q] = 0. Therefore, p eventually finishes the for loop
in lines 6–8 and enters the critical region—a contradiction to the definition of p.

To see that the algorithm avoids starvation, suppose by way of contradiction that some process
p in the trying region starves. Let t be the time when p executes past line 5. Any process r that
starts line 1 after time t will pick a pair (View[q].version,number[r]) bigger than p’s. Therefore, by
the guard in line 8, since p gets stuck, all such processes r get stuck too. The number of processes
that have started line 1 before time t is finite, and so eventually nobody is in the critical region, but
the processes in the trying section are stuck—a contradicting the fact that the algorithm guarantees
progress.

Further reading and bibliographic notes

The first algorithm for mutual exclusion for model M3 was proposed by Merritt and Taubenfeld
[MT00]. Our modification of the Bakery algorithm to use a dynamic set of processes is similar to
the one proposed by Afek et al [AST99] to get an adaptive algorithm for Mn

1 .

8 Building the shared memory

Is it possible to build a memory shared consistently among infinitely many processes? If not then
perhaps models M2 and M3 make little sense after all. We now consider this issue.

Traditional approaches that do not work well with infinitely many processes.
1. A series of papers has shown how to start with registers with very weak consistency and

sharing, namely (single-writer single-reader) safe registers [Lam86b], and progressively construct
better registers in a wait-free manner, all the way to atomic multi-writer multi-reader registers.
Therefore, to get atomic registers in Mn

1 , all we need is to implement the simpler safe registers
and apply these constructions. This works for model Mn

1 , but unfortunately not for models M2
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Code for client process p:

Global variable: seq, initially 0

To write(v) do
1 seq ← seq + 1
2 send (get-ts, seq) to all server processes
3 wait until received (ts, seq, ∗) from f + 1 processes
4 t ← largest ts in received (ts, seq, ts) messages
5 t.seq ← t.seq + 1; t.process ← p
6 send (wr, seq, v, t) to all server processes
7 wait until received (wr-ok, seq) from f + 1 servers

To read do
8 seq ← seq + 1
9 send (rd, seq) to all server processes
10 wait until received (val, seq, ∗, ∗) from f + 1 servers
11 t ← largest ts in received (val, seq, ts, ∗) messages
12 v ← value such that received message (val, seq, t, v)
13 while did not receive f + 1 messages of form
14 (val, seq, x, v) with x ≥ t do
15 send (rd, seq) to all server processes
16 return v

Code for server process q:

Global variables:
ts, initially 〈0, 0〉
v, initially 0

upon receive (get-ts, seq) from p do
17 send (ts, seq, ts) to p

upon receive (wr, seq, w, t) from p do
18 if t > ts then
19 send (propagate, w, t) to all server processes
20 wait until received (propagate, w, t) from f + 1 servers
21 send (wr-ok, seq) to p

upon receive (rd, seq) from p do
22 send (val, seq, ts, v)

upon receive (propagate, w, t) do
23 if have not yet sent (propagate, w, t)
24 then send (propagate, w, t) to all server processes
25 if t > ts and received (propagate, w, t) from f + 1 processes
26 then ts ← t; v ← w

Figure 14: Implementation of (multi-writer multi-reader) atomic registers for model M3 over a
message-passing system with 2f + 1 server processes, up to f of which may fail

or M3. In fact, in these models it is easy to show that there are no wait-free implementations
of (multi-writer multi-reader) atomic registers from either (a) registers that are readable by only
finitely many processes or (b) registers that are writable by only finitely many processes. So this
approach does not work.

2. A traditional way to get shared memory is to link together processes and physical memory
through an interconnect, and treat the memory as a component that responds to read and write
requests, like in a multiprocessor system. Although a multiprocessor system is unlikely to scale to
a large number of processors, this idea is also applicable to loosely-coupled systems. In fact, the
machine rooms of large corporations often have so-called network attached disks that accept read
and write requests; here, disks serve as a shared memory. These systems could scale to a very large
number of hosts, but there is a problem: because a disk can fail, it does not exactly implement
the standard atomic register, which never fails. Can we implement registers that do not fail from
fail-prone ones? Yes, in model Mn

1 [AGMT95, JCT98], and also in models M2 or M3 [AEG03a].
However, in models M2 or M3, any such implementation requires infinitely many fail-prone registers
to implement as little as one fail-free register, even if at most one of the fail-prone registers may
fail [AEG03a]. So this approach is inherently impracticable.

An approach that works.
Another way to implement shared memory is to simulate it over a message passing system

[ABND95, LS97, ES00, LS02]. This approach can successfully implement models M2 and M3.
To get a flavor for how it works, consider an asynchronous message-passing system with 2f + 1
server processes and possibly infinitely many client processes. The idea is that the server processes
implement the shared memory, and (client) processes communicate with the servers to read and
write. Up to f of the servers may crash, and any number of clients may crash. Figure 14 shows a
register implementation in this system.

Each server process keeps its latest known value for the register and an associated timestamp.
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To write v to a register, a (client) process p asks all server processes to send their timestamp (line
2), waits for a majority of responses (line 3), picks the largest timestamp (line 4), increments it
(line 5), and sends v and the new timestamp to all servers (line 6). When a server process q receives
v with the timestamp, it propagates this information to all servers using uniform reliable broadcast
[HT94]. More precisely, q sends v and the timestamp to all server processes in a propagate
message (line 19), and waits for f + 1 acknowledgements (line 20). Then q accepts v and the
timestamp as its new value and timestamp (line 26) (if process q receives a propagate message
while waiting in line 20, q first executes the code in lines 23–26 before continuing to line 21). Then
q sends back an acknowledgement to p in an wr-ok message (line 21). When p receives a majority
of acknowledgements, it returns (line 7). When a server process q′ receives a value and timestamp
propagated from q, q′ itself propagates them to the other servers if q′ has not done so already (line
24). When q′ sees that f + 1 servers have also propagated the information, q accepts v and the
timestamp as its new value and timestamps (lines 25–26).

To read, a process asks all servers to send their values with timestamps (line 9), waits for a
majority of responses (line 10), picks the value with largest timestamp (lines 11–12), and then waits
until a majority of servers have this timestamp (lines 13–15). An exercise for the reader is to show
that this last waiting step is required for correctness.

Proof of correctness

In this proof, we sometimes subscript a variable local to a process p by p.

Lemma 13 At every server process q, tsq is monotonically nondecreasing.

Proof: Clear, since a server only updates tsq with a larger value (lines 25–26).

Lemma 14 If a correct process p starts write(v) then p completes it.

Proof: Clearly, p does not get stuck waiting for ts messages. As for wr-ok messages, note that
when a correct server q receives p’s wr message, it either sends back a wr-ok message, or it sends
a propagate message to all correct servers. Those will echo it back to q, so q will not get stuck
waiting for propagate message, and so q will send a wr-ok message. Therefore, all correct servers
send back a wr-ok message to p. Since there are at least f +1 such processes, p does not get stuck
waiting for wr-ok messages.

Lemma 15 If a correct process p starts read then p completes it.

Proof: Clearly p does not get stuck waiting for val messages. Now consider the timestamp T
chosen in line 11. Then p received a (val, seq, T, ∗) message. If T = 〈0, 0〉 then clearly p does not
get stuck in the while loop, because variable ts at any server is at least as large at T . So assume
that T �= 〈0, 0〉. Therefore, some server q has changed its tq variable to T . Server q only does so if q
receives propagate messages from f +1 servers. Therefore, q received at least one such a message
from a correct server. This server causes all correct servers to receive and send the propagate
message (if they have not done so already). Therefore, all correct servers receive at least f + 1
propagate messages, and so they all eventually have their ts variable set to a value no smaller
than T . Therefore, p does not get stuck in the while loop.

Definition 16 We say that a read operation is good if its caller completes it without crashing. We
say that a write operation is good if either (1) its caller p completes the operation without crashing,
or (2) some correct server receives a propagate message with the same timestamp that p chooses
during the execution of the write.
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Definition 17 For a good read or write operations, we say that ts is its timestamp if ts is the
timestamp chosen in line 4 or 11 during the execution of the operation.

Lemma 18 If a good write o1 completes at some time t then at most f servers have their ts variable
less than o1’s timestamp at time t.

Proof: Let p1 be the process that executes o1. Before a server q sends a wr-ok message to p1, it
must have tsq ≥ tp1 where tp1 is the timestamp chosen by p1. Since p1 waits for wr-ok messages
from f + 1 servers and the ts variables at the servers are monotonically increasing, the lemma
follows.

Lemma 19 If a good read o1 completes at some time t then at most f servers have their ts variable
less than o1’s timestamp at time t.

Proof: This is clear from the while loop in the code for read.
We now define a total ordering O of all good read and write operations according to their

timestamp. If two such operations have different timestamps, then we order first the one with
smaller timestamp. If a write and a read have the same timestamp, then we order the write before
the read. If two reads have the same timestamp, then we order first the read that starts first. It is
not possible for two writes to have the same timestamp, because the timestamp includes a process
identifier to break ties (see line 5).

Lemma 20 O respects the “precedes” relation on operations.

Proof: Indeed, consider two good operations o1 and o2 such that o1 precedes o2, that is, o1

completes before o2 starts. For i ∈ {1, 2}, let pi be the process executing oi and let ti be the
timestamp of oi. By Lemma 18 or 19 (depending on whether o1 is a write or read operation),
and by Lemma 13, we have that at most f servers have their ts variable less t1 when o2 starts.
Operation o2 gets timestamps from f + 1 servers, so it gets at least one timestamp that is at least
t1. Thus, if o2 is a write operation, t2 > t1, and so o2 is ordered after o1 under O. If o2 is a read
operation, then t2 ≥ t1. If t2 > t1 then o2 it is ordered after o1 under O. If t2 = t1 then we have
two cases: (1) if o1 is a read then o2 is ordered after o1 under O, by the rule for ordering reads
with the same timestamp. (2) if o1 is a write then o2 is also ordered after o1 under O, by the rule
for ordering a read and a write with the same timestamp.

Lemma 21 O satisfies the sequential specification of registers.

Proof: (Sketch) We need to show that a read returns the value of the closest preceding write
under O (if any) or the initial value 0 (if there are no preceding writes). This is clear because the
value chosen by a read operation o in line 12 is the value associated with the timestamp of o, and
that timestamp is identical to the timestamp of the closest preceding write under O (or, if there
are no preceding writes, then the timestamp is 0 and the read value is 0).

We thus get the following

Theorem 22 Consider a message-passing system with 2f + 1 server processes where up to f may
crash, and an arbitrary number of client processes, any of which may crash. Figure 14 implements
a MWMR register shared among the client processes.
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Further reading and bibliographic notes
Our algorithm is inspired by the work by Attiya, Bar-Noy, and Dolev [ABND95], who gave the
first simulation of an atomic register over a message passing system. However, Attiya et al only
show how to implement single-writer multi-reader registers; this type of register is not very useful
in models M2 or M3 because it cannot be used to implement multi-writer multi-reader registers.
Subsequent papers have shown how to simulate multi-writer multi-reader atomic registers in a
system where the set of server processes may dynamically change, by using quorums that vary over
time [LS97, ES00, LS02]. Our algorithm is simpler than the ones in those papers because we do not
allow the set of servers to change: dealing with a changing set of servers requires more complexity.

Our algorithm embeds an implementation of uniform reliable broadcast due to Hadzilacos and
Toueg [HT94]. Roughly speaking, uniform reliable broadcast guarantees that (1) a broadcast
message is either delivered by all targets or by none, (2) if the broadcaster does not fail, then the
message is delivered by all targets, and (3) a message that is not broadcast is not delivered by
anyone.

9 Other work on computing with infinitely many processes

Adaptive algorithms have been extensively studied in model Mn
1 (e.g., [MT93, CS94, ADT95,

MA95], etc). Roughly speaking, an algorithm is adaptive if its time complexity—measured in
number of steps taken by a process—is proportional to the number of participating processes,
rather than the total number n of processes that could participate. Most adaptive algorithms de-
signed for Mn

1 do not actually make use of n or use n only superficially (e.g., they may declare
an array with indices 1..n). These algorithms work in M2 with no modifications or only trivial
ones (e.g., finite arrays indexed by processes need to be changed to infinite arrays or linked lists).
As a result, M2 inherits many reasonably efficient algorithms for various problems like collect,
atomic snapshot, immediate snapshot, renaming, lattice agreement, and mutual exclusion. These
algorithms may fail in M3 by losing liveness when new processes keep arriving, similarly to our
algorithm in Figure 4 of Section 3.

Merritt and Taubenfeld [MT00] give various algorithms for election and mutual exclusion for
models M3 and M b

3 , as well as election algorithms for a variant of model M b
3 where some number

of processes are known to participate.
An important problem is to determine what tasks have a fault-tolerant solution in a given

model. Roughly speaking, a task is a multifunction from inputs of processes to allowable outputs
of processes. Many important problems, like consensus, atomic commit, and k-set agreement, can
be cast as a task. For example, consensus can be considered as the task where all processes must
output the same value, which must be one of the input values. Some tasks do not have deterministic
fault-tolerant solutions, so it is important to know which ones do. This question was originally
answered for model Mn

1 by Herlihy and Shavit [HS93, HS99], which gives a full characterization of
tasks with t-resilient and wait-free solutions. Gafni and Koutsoupias [GK98, Gaf02] have extended
the characterization result for model M2. What if processes only have finitely many registers?
Aguilera, Englert, and Gafni [AEG03b] have shown that some very simple tasks that cannot be
solved in M2. But the general characterization of solvable tasks with finitely many registers in M2

is an open problem.
Can consensus be solved in a system with infinitely many processes? Even in Mn

1 , consensus
has no solution that can tolerate just one process crash [FLP85, LAA87], so this impossibility
also applies to M2 and M3. However, there are randomized solutions for Mn

1 (the first ones are in
[Ben83, CIL94]), so perhaps there are also randomized solutions for M2 and M3? Aspnes, Shah, and
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Shah [ASS02] show that the answer is positive, by giving a randomized wait-free algorithm for M3.
The algorithm is based on a weak shared coin, which is a mechanism for processes to get a random
bit that has a reasonable probability of being 0 at all processes, and a reasonable probability of
being 1 at all processes, where reasonable means bounded below by a non-zero constant. Aspnes
et al claim that such a coin can be used in a modification of the consensus algorithm of Chandra
[Cha96], to obtain a consensus algorithm for model M3. Finally, they give a universal construction
[Her91] for model M3, by plugging their consensus algorithm and a collect algorithm into the
traditional universal construction for Mn

1 .
Chockler and Malkhi [CM02] present a variant of the Disk Paxos protocol [GL00] for model

M3, which solves a weak version of consensus that sometimes aborts. To do so, they use a ranked
register [BDFG03], which is a type of read-modify-write register with the nice property that a
fail-free ranked register can be implemented from a set of fail-prone ones.

Merritt and Taubenfeld [MT03] show that (1) in M3, for every t ≥ 1, t-resilient consensus is
possible using t-resilient consensus objects accessible by t+1 processes, and (2) in Mfinite

3 , wait-free
consensus is possible using wait-free consensus objects accessible only by finitely many processes.
It is an open question whether (2) also holds in M3.

What is the problem solvability situation for M3, M b
3 , Mfinite

3 ? Gafni et al [GMT01] have shown
that (1) there is a problem solvable in M b

3 but not in M b+1
3 , (2) there is a problem solvable in M b

3

but not in Mfinite
3 , and (3) there is a problem solvable in Mfinite

3 but not in M3. Therefore, in
terms of problem solvability, M3 is strictly weaker than Mfinite

3 , which in turn is strictly weaker
than M b

3 for any b; and M b+1
3 is strictly weaker then M b

3 . However, general deterministic solvability
characterizations for models M3, M b

3 , Mfinite
3 are still open problems.
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