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Abstract
Technologies like RDMA and Gen-Z, which give access to
memory outside the box, are gaining in popularity. These
technologies provide the abstraction of far memory, where
memory is attached to the network and can be accessed by
remote processors without mediation by a local processor.
Unfortunately, far memory is hard to use because existing
data structures are mismatched to it. We argue that we need
new data structures for far memory, borrowing techniques
from concurrent data structures and distributed systems. We
examine the requirements of these data structures and show
how to realize them using simple hardware extensions.
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1 Introduction
Far memory technologies, such as RDMA [33] and Gen-Z [15],
which allow memory to be accessed via an interconnect in a
cluster, are generating much interest. The fundamental capabil-
ity of far memory is one-sided access, with which processors
in the cluster can directly read and write far memory without
mediation by a processor close to the memory. Far memory
brings many potential benefits over near memory: higher mem-
ory capacity through disaggregation, separate scaling between
processing and far memory, better availability due to separate
fault domains for far memory, and better shareability among
processors.
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However, far memory has higher latency than near mem-
ory, which poses challenges. Developers often use memory
through high-level data structures, such as hash tables, trees,
and queues. Unfortunately, existing data structures are ill-
suited for use with far memory because they were designed
under different assumptions. Data structures for local memory
assume a small, homogeneous access time to memory, which
does not hold for far memory. NUMA-aware data structures
discriminate between local and remote socket memory, but
they assume cache coherence and strive to minimize coherence
traffic across sockets. Far memory, however, does not guaran-
tee cache coherence. Distributed data structures assume that
memory is operated on by a local processor, where remote
processors access that memory via RPCs and similar mecha-
nisms. Far memory is fundamentally different, working under
one-sided accesses. So, there is a mismatch between today’s
data structures and the ones needed for far memory.

Prior work [24, 25, 35] demonstrates this mismatch, by
considering traditional hash tables that are implemented with
two approaches: (1) using far memory with one-sided access,
or (2) using traditional memory with two-sided RPC access.
The authors show that (2) outperforms (1), concluding that one-
sided access appears to have diminished value. We interpret
these results differently: traditional hash tables, as is, are the
wrong data structure for far memory.

We need new data structures designed specifically for far
memory that consider its assumptions and performance. In
particular, data structures need operations that complete in
O(1) far memory accesses most of the time, preferably with a
constant of 1 (§3.1). This requirement precludes most existing
data structures today from use with far memory. For instance,
linked lists take O(n) far accesses, while balanced trees and
skip lists take O(logn).

To reduce far accesses, we must trade them for near ac-
cesses, by caching some data intelligently at clients, by op-
timizing data structure traversals across far memory, and by
efficiently supporting data sharing in the face of caching.

Furthermore, we believe that far memory needs broader
hardware primitives to properly support efficient data struc-
tures. Inspired by ideas from processor instruction set architec-
tures (ISAs) and from distributed systems, we propose simple
hardware extensions to far memory that are powerful and gen-
erally applicable, in that they avoid round trips to far memory,
they permit a consistent view of data across nodes, and they

https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3317550.3321433


HotOS ’19, May 13–15, 2019, Bertinoro, Italy M. K. Aguilera, K. Keeton, S. Novakovic, S. Singhal

work on many data structures. Specifically, we propose that far
memory support indirect addressing, general scatter-gather
primitives, and notifications. Indirect addressing is a common
feature of processors; it permits a single instruction to def-
erence a pointer and load or store at the resulting address;
more sophisticated versions have an index that specifies an
offset added to a base address to choose the pointer. Scatter-
gather combines many memory transfers into one, without
requiring explicit management by application or system soft-
ware. Notification permits a user to know that a location has
changed without continuously reading that location. These
primitives are useful for far memory because they avoid far
memory round trips, while providing the required functionality
to improve data structure caching and traversal.

We identify how these extensions support new data struc-
tures for far memory, such as counters, vectors, maps, and
queues (§5). We illustrate the benefits of far memory data
structures with a simple case study of a monitoring application
(§6). We examine in detail its data structure needs and show
how they map to the primitives that we identify. We conclude
the paper with a discussion of how to deal with issues of scale
in implementing the proposed hardware primitives (§7).

2 Background
Recent advances provide the building blocks for construct-
ing architectures with a large pool of far memory that can
be shared across a high-performance system interconnect by
decentralized compute resources. High-performance system
interconnects, such as RDMA [33], OmniPath [21], and Gen-
Z [15], provide low-latency access from processors to far
memory. Existing systems can transfer 1 KB in 1µs using
RDMA over InfiniBand FDR 4x [5, 30].

Commercial [14, 18, 19, 22, 23] and research proposals [1,
2, 5, 26, 28, 29, 32] for far memory architectures share several
characteristics. First, they provide a high-capacity shared pool
of far memory that can be accessed by processors at laten-
cies within 10× of node-local near memory latencies. This
far memory pool could be implemented using any of several
technologies (e.g., an RDMA-enabled memory server or Gen-
Z fabric-attached memory). Second, they provide a partially
disaggregated architecture, in that they treat near memory
as private and far memory as shared. We use near memory
as a data structure-specific (i.e., non-system-managed) cache
for shared data in far memory. Third, far memory has no ex-
plicit owner among application processors. Thus, access to
far memory by one processor does not need to be mediated
by any other processor. This unmediated access is provided
by one-sided loads/stores or gets/puts and facilitated through
atomic operations (e.g., compare-and-swap). Fourth, partial
disaggregation provides separate fault domains between appli-
cation processing and far memory, meaning that failure of a
processor does not render far memory unavailable.

We make several assumptions about the capabilities of the
far memory technologies. First, we assume the existence of

atomic operations on far memory (e.g., compare-and-swap
(CAS) as in RDMA [34] or Gen-Z [16]), which permit a pro-
cessor to make an update to far memory in an all-or-nothing
fashion. These operations provide atomicity at the fabric level,
bypassing the processor caches and near memory. Second,
we assume that the memory fabric can enforce ordering con-
straints on far memory operations. In particular, memory op-
erations issued before a memory barrier (or fence) complete
before memory operations after the barrier. This functional-
ity can be provided using request completion queues in the
memory fabric interface.

3 What is a far memory data structure?
A far memory data structure has three components: (1) far data
in far memory, containing the core content of the data structure;
(2) data caches at clients, containing data that is discarded
when clients terminate execution; and (3) an algorithm for
operations, which clients execute to access the data structure.
Here, client designates the user of the data structure.

Far memory data structures share some characteristics with
both near memory and distributed data structures. Like near
memory data structures, their operations are constrained to
modify data using only hardware primitives. In contrast, dis-
tributed data structures can use mechanisms such as RPCs that
can access many data items in arbitrary ways, with implica-
tions for both performance and concurrency. Like distributed
data structures, a far memory data structure defines how the lo-
cal memories should be accessed and changed to cache data. In
contrast, near memory data structures do not directly manage
their caches.

These differences suggest different performance metrics
and requirements for far memory data structures, which we
consider next.

3.1 Metrics for performance

Operations on far memory data structures incur both local
and far accesses. Far accesses dominate the overall cost, as
they are an order of magnitude slower (O(1µs)) than local
accesses (O(100ns)). Moreover, local accesses can be hidden
by processor caches, while far accesses cannot, which further
increases the performance difference. For these reasons, the
key performance metric for far memory data structures is far
memory accesses.

To be competitive with distributed data structures using
RPCs, far memory data structures should incur few far ac-
cesses, preferably one, most of the time. With too many far
accesses, far memory data structures lose to distributed data
structures in performance. With distributed data structures, a
processor close to the memory can receive and service RPC
requests to access the data structure. Doing so consumes the
local processor, but takes only one round trip over the fabric.
Far memory data structures that take several round trips to
far memory perform worse. Fundamentally, this is the age-
old trade-off between shipping computation or data, where
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an RPC with traditional memory ships computation, while a
one-sided access model with far memory ships data.

3.2 Requirements

We want general-purpose far memory data structures that can
be broadly used across many applications. Each data structure
has its own requirements, which vary along two dimensions:
concurrent access model and freshness.

Concurrent access model: whether one or many clients can
write to the data structure, and whether one or many clients
can read it. The access model affects how clients manage their
caches, with a more restrictive model improving efficiency.
Additionally, concurrency requires techniques to avoid intro-
ducing inconsistencies in data.

Freshness: whether the data structure must return the most re-
cent values or whether it can return stale data. This dimension
affects how clients can use their caches.

4 Hardware primitives
While it is possible to design new far memory data structures
using unmodified hardware, current hardware poses unneces-
sary obstacles. To achieve few far accesses per operation, we
need to go beyond the current far memory primitives, which
are limited to loads, stores, and a few atomics (§2). We need
primitives that do more work, but not so much that they need
an application processor to execute. In this section, we discuss
such primitives and give an intuition of how they help; in the
next sections (§5, §6), we use them to develop data structures.

We consider only hardware extensions with three charac-
teristics: (1) they are relatively simple and have a narrow
interface; (2) they make a significant difference; and (3) they
are general-purpose. We consider three classes of extensions,
leveraged from other domains: indirect addressing, scatter-
gather, and notifications. We discuss scalability issues for
implementing these hardware primitives in §7.

4.1 Indirect addressing

Common in processors, indirect addressing dereferences a
pointer to determine another address to load or store. More
precisely, given address ad, the hardware reads ad to obtain
address ad ′, and loads or stores on ad ′ (load0 or store0 in
Fig.1). Two useful variants add an index i to either ad or ad ′,
which extracts a chosen field of a struct (load1, store1, load2,
store2 in Fig.1). Indirect addressing is useful for far memory,
because it avoids a round trip when a data structure needs to
follow a pointer.

Fetch-and-add is provided by some far memories, such as
RDMA and Gen-Z. This instruction adds a value v to a lo-
cation and returns its old value. Fetch-and-add-indirect adds
v to a location and returns the value pointed by its old value
(faai in Fig.1). Store-and-add-indirect stores a value v ′ in-
stead of returning one (saai). These instructions provide the
common idiom of dereferencing a pointer and incrementing it
(“*ptr++”).

Instruction Definition
load0(ad, ℓ) tmp= ∗ ad; return ∗tmp;
store0(ad, v, ℓ) tmp= ∗ ad; ∗tmp=v ;
load1(ad, i, ℓ) tmp= ∗ (ad + i); return ∗tmp;
store1(ad, i, v, ℓ) tmp= ∗ (ad + i); ∗tmp=v ;
load2(ad, i, ℓ) tmp=(∗ad) + i ; return ∗tmp;
store2(ad, i, v, ℓ) tmp=(∗ad) + i ; ∗tmp=v ;

faai(ad, v, ℓ) tmp= ∗ ad; ad += v ; return tmp;
saai(ad, v, v ′, ℓ) ∗ad = v ′; ad += v ;
add0(ad, v, ℓ) ∗ ∗ ad += v ;
add1(ad, v, i, ℓ) tmp = ad + i ; ∗ ∗ tmp += v ;
add2(ad, v, i, ℓ) tmp = ∗ad + i ; ∗tmp += v ;

rscatter(ad, ℓ, iovec) Read far memory range, store in local iovec
rgather(iovec, ad, ℓ) Read far memory iovec, store in local range
wscatter(ad, ℓ, iovec)Write far memory iovec from local range
wgather(iovec, ad, ℓ) Write far memory range from local iovec

notify0(ad, ℓ) signal change in [ad, ad + ℓ)

notifye(ad, v, ℓ) signal ad set to v
notify0d(ad, ℓ) signal change in [ad, ad + ℓ), return data

Figure 1. Primitives from other domains useful to far memory. All
primitives include a length ℓ to determine how many bytes to transfer
(not shown in pseudo-code). iovec is an array of buffers with a base
pointer and length for each.

Additional useful variants add v to a value pointed to by a
location (add0), possibly with indexing (add1 and add2).

4.2 Scatter-gather

Scatter and gather permit clients to operate on disjoint buffers
in one operation, without requiring explicit management in ap-
plication or system software. With far memory, this primitive
has four variants, depending on (a) whether we read or write,
and (b) whether the disjoint buffers are at the client or in far
memory (rscatter, rgather, wscatter, wgather in Fig.1).

Scatter-gather can be implemented on the client side. In fact,
some operations are already provided in RDMA (wgather) or
Gen-Z (rgather and wscatter). To gather from far memory or
scatter to far memory, the client-side network adapter issues
concurrent operations to far memory. To gather from local
memory or scatter to local memory, the adapter issues a single
operation to far memory using many local buffers.

4.3 Notifications

A notification is a callback triggered when data changes—an
idea often used in cache coherence protocols and distributed
systems when a remote party needs to monitor changes without
having to constantly probe remotely. Far memory has that
flavor, with a high cost to probe. Notifications can be used to
invalidate or update cached data or metadata at clients, when
the client wants to avoid stale content in its cache.

With far memory, a location refers to a memory address or a
range of addresses (notify0 in Fig.1). We also propose equality
notifications as another useful extension. This notification is
triggered when a word matches a given value (notifye in Fig. 1).
Another variant returns the changed data (notify0d), which is
useful when data is small.
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For ease of implementation, ad and ℓ need to be word-
aligned and not cross page boundaries, so that the hardware
can associate notifications with pages (e.g., record them in
page table entries at the memory node to avoid additional
metadata). These are not strong limitations since notification
clients (data structure algorithms) can align data as needed.

Because we want notifications to be scalable, they may be
delivered in a best-effort fashion (e.g., with delay or unreli-
ably). We discuss these scalability issues in §7.

5 Far memory data structures
In this section, we identify how our proposed hardware exten-
sions support new data structures for far memory, including
simple data structures (e.g., counters, vectors, mutexes and
barriers), maps, queues, and refreshable vectors.

5.1 Simple data structures

Counters are implemented using loads, stores, and atomics
with immediate addressing. Vectors take advantage of indi-
rect addressing (e.g., load1 and store1) for indexing into the
vector using a base pointer. If desired, client caches can be up-
dated using notifications: clients subscribe to specific (ranges
of) addresses to receive notifications when they are modified
(notify0) or when they reach arbitrary values (notifye).

Far memory mutexes and barriers are implemented sim-
ilarly to their shared memory analogues. Mutexes use a far
memory location initialized to 0. Clients acquire the mutex
using a compare-and-swap (CAS). If the CAS fails, equality
notifications against 0 (notifye) indicate when the mutex is
free. Barriers use a far memory decreasing counter initialized
to the number of participants. As each participant reaches the
barrier, it uses an atomic decrement operation to update the
barrier value. Equality notifications against 0 (notifye) indicate
when all participants complete the barrier.

5.2 Maps

With near memory, maps are implemented using hash tables
or trees. However, these are poor choices for large maps in far
memory. Hash tables have collision problems: chaining within
buckets leads to additional round trips, and inlining colliding
items on a bucket limits the chain length but affects throughput.
Furthermore, resizing hash tables is disruptive when they are
large (e.g., a trillion elements). With trees, traversals take
O(logn) far accesses; this cost can be avoided by caching
most levels of the tree at the client, but that requires a large
cache with O(n) items (e.g., a B-tree with a trillion elements
must cache billions of elements to enable single round trip
lookups).

To address this problem, we propose a new data structure,
the HT-tree, which is a tree where each leaf node stores base
pointers of hash tables. Clients cache the entire tree, but not the
hash tables. To find a key, a client traverses the tree in its cache
to obtain a hash table base pointer, applies the hash function
to calculate the bucket number, and then finally accesses the

bucket in far memory, using indirect addressing to follow the
pointer in the bucket. When a hash table has enough collisions,
it is split and added to the tree, without affecting the other
hash tables. Clients use notifications to learn that a tree node
has changed; alternatively, we allow client caches to become
stale and introduce a version number for each hash table,
kept at the client trees and each item in the data structure
in far memory. When a client accesses an item, it checks
that its cached version matches what is in far memory, to learn
whether its cache is stale. When the cache is up-to-date, clients
look up items in one far access, and store items in two (one
access checks the version prior to updating a bucket pointer
with a CAS). An HT-tree can store 1 trillion items with a tree
of 10M nodes (taking 100s of MB of cache space) and 10M
hash tables of 100K elements each.

5.3 Queues

Queues are useful to store and consume work items. A queue
is typically implemented as a large array, a head pointer, and a
tail pointer. Items are added to the tail, and they are removed
from the head. Races are a challenge: when many clients
operate on the queue concurrently (updating the head, tail, and
the array simultaneously), they could corrupt the queue.

We address this problem by using fetch-and-add-indirect
and store-and-add-indirect (faai, saai). These instructions per-
mit a client to do two things atomically: (1) update the head or
tail pointers and (2) extract or insert the required item. As a re-
sult, we can execute dequeue and enqueue operations without
costly concurrency control mechanisms (e.g., locks, lock-free
techniques), with one far access in the common fast-path case,
which is efficient. Infrequent corner cases trigger a slow-path,
which executes less efficiently, requiring additional far ac-
cesses. There are two corner cases: when the head and tail
pointers wrap around, and when the queue is empty or near
empty. Clients must determine that they should run the slow-
path without incurring additional far accesses in the fast-path.
To do this, we allocate a slack region past the array consist-
ing of n + 1 locations, where n is a bound on the number of
clients. Clients check if they reach the slack after an operation
completes, in the background, so they need not check during
the fast-path whether the head or tail requires a wrap around.
Similarly, clients do not check if the queue is full or empty
during the fast-path, relying on a (second) logical slack region
to keep the head and tail 2n positions apart. (Due to space
constraints, we omit the details here.)

5.4 Refreshable vectors

Caching a vector at clients (§5.1) may generate excessive
notifications when the vector changes often. To address this
issue, we propose refreshable vectors, which can return stale
data, but include a refresh operation to guarantee the freshness
of the next lookup. This abstraction is useful in distributed
machine learning to store model parameters [27]: workers read
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parameters from the vector and refresh periodically to provide
bounded staleness and guarantee learning convergence.

To implement refreshable vectors, each client keeps a cached
copy of the vector. We optimize refresh so that clients need
not read the full vector, applying a dynamic policy that shifts
from client-initiated version checks (when data is changing
frequently) to a notification-based scheme as the rate of up-
dates slows. Vector entries are grouped, with a version number
per group; a client reads the version numbers from far memory,
compares against its cached versions, and then uses a gather
operation (rgather) to read at once all entries of groups whose
versions have changed. To avoid the latency of explicitly read-
ing slowly changing version numbers from far memory as
iterative algorithms converge, a client can use a version num-
ber invalidation (notify0) to learn when any element of the
corresponding group has changed. Changes in per-group ver-
sion numbers will prompt the client to refresh the entire group,
even if only a subset of the elements has changed. If, instead,
individual vector element version numbers are tracked in a
contiguous memory region, the client can use an update notifi-
cation (notify0d) for the version number region to learn which
specific entries have changed.

6 Case study: Monitoring

We now describe how to apply our ideas to a monitoring ap-
plication, where a sampled metric (e.g., CPU utilization) is
tracked in far memory. The system must raise alarms of differ-
ent severity if the samples exceed some predefined thresholds
(warning, critical, failure) for a certain duration within a time
window (e.g., 10s). The clients of the monitoring service are a
producer and multiple consumers. In a naive implementation,
the producer writes the metric samples to far memory, and con-
sumers read the data for analysis. Each sample is written once
and read by all consumers, resulting in (k + 1)N far memory
transfers for N samples and k consumers.

With our proposed hardware primitives and data structures,
we can do much better. Rather than storing samples, far mem-
ory keeps a vector (§5) with a histogram of the samples. The
producer treats a sample as an offset into the vector, and incre-
ments the location using one far memory access with indexed
indirect addressing (Fig.1). Each consumer uses notifications
(Fig.1) to get changes in the histogram vector at offsets cor-
responding to the alarm ranges. Since the samples are often
in the normal range, notifications are rare, reducing far mem-
ory transfers from N to m<<N . Consumers optionally copy
(with an extra far memory access) the histogram values in the
prescribed range for further aggregation.

The above works if we assume a single time window. To
track multiple windows, we can use a collection of histogram
vectors implemented as a circular buffer, with a base pointer
to the current vector (§5). After a window ends, the producer
switches the base pointer in far memory and the client is
notified (Fig.1).

With this approach, the producer and consumers operate
independently. Different consumers can be notified of different
thresholds and take different actions. Only exceptional events
cause data transfers to the consumer, reducing far memory
traffic. Since consumers can access the distribution over a
number of windows, they can also correlate the histograms to
detect variations in the metric over multiple windows. While
simple, this use case shows how far memory can be used as
an intermediary to reduce interconnect traffic.

7 Implementation scalability
Implementing our proposed hardware primitives requires ad-
dressing scalability in the size of far memory, the number of
clients, and the expected usage patterns.

7.1 Indirect addressing in large far memories

Large far memories comprise many memory nodes, with the
far memory address space distributed across these nodes. Sim-
ilar to interleaving in traditional local memories, data may be
striped across multiple far memory nodes to increase aggre-
gate far memory bandwidth and parallelism. This architecture
presents challenges for memory-side indirect addressing: a
dereferenced pointer may refer to data held by a remote mem-
ory node. If the target memory node can be easily determined
from the address, then the memory node processing the indi-
rection may forward the request to the memory node storing
the dereferenced pointer target. Alternately, a request for a
dereferenced remote address could return an error, indicating
only direct addressing, and leaving it up to the compute node
to explicitly issue a request to the target memory node to com-
plete the indirection. Note that both cases require more than
a single round trip to far memory, with request forwarding
performing fewer network traversals.

In addition to this data-unaware approach to far memory
interleaving, data may be distributed across far memory in a
data structure-aware fashion (e.g., for higher levels of a tree, or
for very large keys or values), to provide more parallelism be-
tween independent requests. Parts of the data structure where
indirect addressing is expected to be common (e.g., a chain
within a hash bucket) may benefit from localized placement,
to minimize network traversals for indirection. Far memory
allocators may be designed with locality in mind, to permit
applications to provide hints about the desired (anti-)locality
of a data structure, which the allocator can consider when
granting the allocation request.

7.2 Notification scalability

Notifications require keeping track of which clients want to
be notified (the subscribers) for which memory ranges (the
subscriptions). A hardware implementation of notifications
faces several scalability challenges:

Number of subscribers. To scale, we use a software-hardware
co-design: the subscribers of the hardware primitives (Fig. 1)
are compute nodes, and a software layer on each compute node
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routes notifications to individual processes. We can also use a
publish-subscribe architecture [13]: the hardware subscribers
are dedicated software brokers (10–100s of them), which then
route notifications to the subscribers over the network.

Number of subscriptions. To scale, we can increase the spa-
tial granularity of the hardware subscriptions (e.g., two sub-
scriptions on nearby ranges become one subscription on an
encompassing range). An update would trigger a notification
for the encompassing range, leading to potential false posi-
tives for the original subscriptions, which the subscriber would
need to check. Alternatively, the notification can carry enough
information about the triggering update to allow a software
layer to distinguish between the original ranges.

Network traffic. Depending on application consistency goals,
we can coalesce many notifications to the same subscription
(i.e., temporal batching). During traffic spikes, we can drop
notifications for entire periods (e.g., seconds), replacing them
with a warning that notifications were lost. The data struc-
ture algorithm then adapts accordingly, based on the desired
consistency goals.

8 Related work
Data structures and algorithms. Prior work proposes meth-
ods to build better data structures using one-sided accesses.
DrTM+H [35] caches hash table entry addresses on the client
for later reuse. FaRM [11] uses Hopscotch hashing, where
multiple colliding key-value pairs are inlined in neighboring
buckets, allowing clients to read multiple related items at once.
These approaches have drawbacks: DrTM+H keeps significant
metadata on clients, while FaRM consumes additional band-
width to transfer items that will not be used. The Berkeley
Container Library (BCL) [6] focuses on avoiding coordination
between clients and building a usable library for applications.
Other authors [12] consider B-trees with one-sided access.
Several papers argue against data structures with one-sided
access [24, 25]. What distinguishes our proposal from all of
the above is an emphasis on designing fundamentally new data
structures that reduce far memory access to a minimum—one
far access most of the time—which we find to be a requirement
to compete with distributed data structures based on RPCs.

The goal of avoiding far memory accesses is an example of
a broader class of communication-avoiding algorithms [10],
which aim to avoid communication (i.e., moving data between
memory hierarchy levels and between processors over a net-
work) because it is more costly than arithmetic computation.
Follow-on work in write-avoiding algorithms aims to avoid the
penalties of asymmetric write performance [4, 8] in emerging
non-volatile storage devices. This work designs algorithms
to avoid expensive operations, and, where possible, achieve
lower bounds on the number of (reads and) writes.

Our HT-tree is a data structure that combines multiple data
structures (a tree of hash tables). This idea has been proposed
with other data structures, to achieve objectives different from

ours. MassTree [31] uses a trie of B+trees. A burst trie [17]
is a trie with each leaf node replaced by a small container
data structure (linked list, binary search tree, or splay tree). In
particular, a HAT-trie [3] uses an array as the container. The
goal of burst- and HAT-tries is efficient storage of variable-
length strings.

Distributed shared memory. Far memory data structures per-
mit different data structures to use different strategies for main-
taining their consistency. An early application of this idea was
in the Munin distributed shared memory (DSM) system [9],
which used differentiated consistency policies for different
data structures, based on sharing patterns. Variable declara-
tions are annotated to indicate sharing patterns, with system-
and user-defined consistency protocols used to enforce de-
sired consistency levels while minimizing the communication
needed to keep the distributed memories consistent.

GAM [7] is a recent distributed shared memory system
implementing directory-based cache coherence over RDMA.
GAM executes writes asynchronously and allows them to by-
pass other reads and writes, providing partial store order (PSO)
consistency. Unreliable notifications in far data structures pro-
vide even weaker guarantees, as invalidations upon writes not
only may arrive out of order (due to network congestion), but
may never arrive. With weak consistency models, the pro-
grammer needs to take additional care (e.g., using fences in
PSO) to ensure correctness. In far data structures, high-priority
warning messages and versioning serve as helper mechanisms
to the programmer, compensating for the lack of reliable and
timely notifications.

Hardware support. Hardware changes for data structures
have been proposed before, such as pointer chasing in the con-
text of 3D die-stacked memory and FPGAs [20, 36]. Both pro-
posals require complex support for traversing pointer-linked
data structures of arbitrary length. Instead, we look for small
hardware extensions (i.e., no loops) for indirect addressing,
scatter-gather, and notifications.

Protozoa is an adaptive granularity cache coherence pro-
posal enabling data movements to be matched with an applica-
tion’s spatial locality [37]. Unlike Protozoa, far memory data
structures propose variable coherence notification subscrip-
tions for the purpose of reducing the amount of metadata.

9 Conclusion

Technologies like RDMA and Gen-Z extend memory beyond
what is in the box, to a large far memory. However, existing
data structures are poorly suited for far memory, due to the
one-sided model used to access it. We introduced far memory
data structures to address this problem; these new data struc-
tures reduce far accesses with the help of simple hardware
extensions to far memory. This combination of software and
hardware techniques will enable programmers to think outside
the box.
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