
Fast Asynchronous Consensus

with Optimal Resilience

Ittai Abraham, Marcos K. Aguilera, and Dahlia Malkhi

Microsoft Research Silicon Valley

Abstract. We give randomized agreement algorithms with constant ex-
pected running time in asynchronous systems subject to process failures,
where up to a minority of processes may fail. We consider three types
of process failures: crash, omission, and Byzantine. For crash or omis-
sion failures, we solve consensus assuming private channels or a public-
key infrastructure, respectively. For Byzantine failures, we solve weak
Byzantine agreement assuming a public-key infrastructure and a broad-
cast primitive called weak sequenced broadcast. We show how to obtain
weak sequenced broadcast using a minimal trusted platform module.
The presented algorithms are simple, have optimal resilience, and have
optimal asymptotic running time. They work against a sophisticated ad-
versary that can adaptively schedule messages, processes, and failures
based on the messages seen by faulty processes.

1 Introduction

In the consensus problem, each process starts with some initial value and must
make an irrevocable decision on one of the initial values, such that all correct
processes decide on the same value. The challenge lies in solving consensus in the
presence of faulty processes. In this paper we consider asynchronous message-
passing systems, where processes communicate by sending messages, and there
are no bounds on message delays or on the relative speed of processes. In such
a system, consensus cannot be solved [21], but it can be solved if processes need
to terminate only with probability one [3].

Chor, Merritt, and Shmoys [11] gave an algorithm that solves consensus with
probability one in constant expected time, in a system with crash failures and

n ≥ 3+
√

5
2 f+1 ≈ 2.62f+1, where n is the number of processes and f is the

maximum number of faulty processes. Subsequently, Attiya and Welch [2] gave
an algorithm based on an observation of Gafni, which works with the opti-
mal resiliency of n ≥ 2f+1, but the algorithm requires a message-independent
adversary—one that acts independently of the content of messages.

Our first result is an algorithm that works in a system with n ≥ 2f+1
and a rather sophisticated adversary that can adaptively schedule messages,
processes, and failures based on the message contents seen by faulty processes.
The algorithm relies on private channels. It uses a secret sharing scheme and a
simple binding gather primitive, explained in Section 4.

Theorem 1 Consensus can be solved by an algorithm with constant expected running
time in an asynchronous system with private channels, a sophisticated adversary, and
n ≥ 2f+1 processes, where f processes may crash.



Our result for crash failures can be easily extended to (general) omission
failures, assuming the presence of a public-key infrastructure (PKI). Roughly
speaking, a PKI provides a public-key cryptographic system in which each pro-
cess pi has a secret decryption function Di and secret signing function Si, and
all processes know the public encryption function Ej and the public one-way
signature verification function Vj of all other processes pj . Except with negligi-
ble probability, signatures cannot be forged and encrypted messages cannot be
decrypted by a party that does not have the secret signing or decryption func-
tions. A PKI can be implemented under suitable cryptographic assumptions. By
using a PKI, we require the adversary to be computationally bounded and our
algorithms have a negligible probability of not terminating due to the adversary
breaking the PKI.

Theorem 2 Consensus can be securely implemented by an algorithm with constant
expected running time in an asynchronous system with a computationally-bounded so-
phisticated adversary, a public-key infrastructure, and n ≥ 2f+1 processes, where f

processes may experience omission failures.

Our next result concerns Byzantine failures, and it builds upon our result for
omission failures. A simple partitioning argument shows that Byzantine agree-
ment (consensus) cannot be solved with 2f+1 ≤ n ≤ 3f , even with a PKI.
Hence, we augment the system with a primitive called weak sequenced broad-

cast. Roughly speaking, weak sequenced broadcast is a broadcast that ensures
that (a) messages from a given sender are delivered by correct processes in the
same order; this is an ordering per-sender, similar to FIFO broadcast, and (b)
if the sender is correct then eventually all processes will receive all its messages.
We show one way to implement weak sequenced broadcast by using a minimal
trusted platform module, a component which is becoming standard.

Even with weak sequenced broadcast, Byzantine agreement cannot be solved
with 2f+1 ≤ n ≤ 3f , because correct processes may decide a value that is not
one of their initial values, even if their initial values are all the same, violating the
Validity property of Byzantine agreement. So we require the Validity property
to hold only if all processes are correct, and therefore we solve weak Byzantine

agreement [26]. The algorithm has constant expected running time in a system
with weak sequenced broadcast and n ≥ 2f+1. It borrows from the approach of
Feldman and Micali [18, 19] based on verifiable secret sharing (VSS). Using weak
sequenced broadcast, we can implement several building blocks like sequenced
broadcast (which we define later) and VSS. We are not aware of other work for
asynchronous systems with Byzantine failures and n ≥ 2f+1.

Theorem 3 Weak Byzantine agreement can be securely implemented by an algorithm
with constant expected running time in an asynchronous system with a computationally-
bounded sophisticated adversary, a public-key infrastructure, weak sequenced broad-
cast, and n ≥ 2f+1 processes, where f processes may be Byzantine.

Weak sequenced broadcast itself may be implemented in many ways, one
of which is demonstrated here by using a minimal trusted platform module
(TPM). The TPM has a register which can be updated only by invoking guarded
functions of the module, and stores a private key which is used for signing the



register value upon request. This system model is useful when one can trust the
hardware platform but the system is otherwise vulnerable (say, to malware). But
in some other settings, the hardware of some machines may not be trusted. In
this case, we can use an external service to aid in implementing weak sequenced
broadcast, e.g., using a public certification authority [22] or other means.

All the algorithms we present have optimal resilience and asymptotically
optimal (constant) expected running time. They are based on a suitable combi-
nation of known techniques as we explain below. Due to space limitations, the
proofs of our results are omitted; they will be included in the full version.

Related work. Our work touches one of the most active areas of research in
distributed computing, and it is therefore beyond our scope to cover all related
work. Below, we cover the most relevant results and we refer the reader to [28,
2] for an extensive treatment.

Byzantine failures. There have been proposals to solve Byzantine agree-
ment in a system with n ≥ 2f+1 using strong primitives such as an append-only

log [12] or trusted increment [27]. The append-only log is similar to weak se-
quenced broadcast. However, these works differ from ours because they consider
partially synchronous systems, that is, the liveness of the algorithms is con-
ditional on eventual synchrony. In contrast, we consider a fully asynchronous
system and provide randomized algorithms that terminate with probability one
(except for a negligible probability that the cryptosystem is broken). Our imple-
mentation of weak sequenced broadcast using TPM’s is similar to the scheme by
[25]. A formal specification of TPM’s is given in [31]. The idea of using strong
primitives to boost the resilience of Byzantine agreement algorithms has been
suggested in the wormhole approach of Correia et al [13]. Our solution for the
Byzantine case uses a simple asynchronous VSS protocol for n ≥ 2f+1, which is
based on zero knowledge and weak sequenced broadcast. Our asynchronous VSS
protocol is similar to the PVSS protocol of [30] (but they have not considered
asynchronous VSS or use weak sequenced broadcast). Other asynchronous VSS
protocols work only for n ≥ 3f+1 [9, 6].

A public-key infrastructure has often been used for reaching agreement. In
synchronous systems with Byzantine failures, Dolev and Strong [15] show how
to solve terminating reliable broadcast for n ≥ f+1. Katz and Koo [24] show
how to solve Byzantine agreement for n ≥ 2f+1 in constant expected time [24]
(also see [17]). Our asynchronous randomized probabilistic agreement primitive
is similar to the leader based approach of [24]. In asynchronous systems, [8] shows
how to solve Byzantine agreement for n ≥ 3f+1 in constant expected time with
asymptotically optimal message complexity.

Without computational assumptions, Byzantine agreement with probability
one in an asynchronous system is given by Ben-Or [3] for n ≥ 5f+1 and by
Bracha [5] for n ≥ 3f+1. However, these algorithms take expected exponential
time for decision. Our solution is based on the approach of [3].

Algorithms for solving Byzantine agreement in constant expected time are
given by Feldman and Micali [18, 19] for n ≥ 3f+1 for the synchronous model
and n ≥ 4f+1 for the asynchronous model [17]. For n ≥ 3f+1 and an asyn-



chronous model, [9, 29] solve Byzantine agreement with probability 1−ǫ and, con-
ditional on success, processes terminate in constant expected number of rounds,
while [1] solves Byzantine agreement with probability one termination and a
polynomial expected running time. If n ≤ 3f , randomized Byzantine agreement
is impossible in an asynchronous system even with a PKI. It is also impossible
in a synchronous system without a PKI [20]. [4] solves Byzantine agreement in
expected constant rounds in an asynchronous system with n ≥ 5f+1. This pro-
tocol has O(log n) communication complexity per message; however, it assumes a
trusted dealer and does not obtain optimal resilience. Our solution, like those of
[18, 11, 19, 9, 29, 1], require polynomial communication complexity per message.

Benign failures. [11] addresses the problem of solving consensus in con-
stant expected time with crash or omission failures. There are algorithms for
synchronous systems and n ≥ 2f+1, and for asynchronous systems and n ≥
3+

√
5

2 f+1. An algorithm for asynchronous systems and n ≥ 2f+1 is given in
[2] using a get-core primitive suggested by Gafni, but this algorithm requires a
message-independent adversary. Our solutions use a similar structure and prim-
itives as [11, 2]. The main differences are the following: (1) to handle stronger
adversaries we need a stronger binding gather primitive; (2) we use probabilistic
agreement to solve multi-valued consensus while [11, 2] use a common coin to just
solve binary consensus; (3) to handle stronger adversaries, we use verifiable se-
cret sharing; (4) we give an algorithm that tolerates Byzantine failures. For asyn-
chronous systems, it is conjectured that the protocol of [1] solves consensus for
n ≥ 3f+1 in constant expected time (without a PKI) for a message-dependent
adversary and omission failures. Our work differs because we give algorithms
for asynchronous systems and n ≥ 2f+1. Consensus can also be solved with
n ≥ 2f+1 in partially synchronous systems [14, 16], or in systems with failure
detectors [10].

2 Model

We consider a system with n processes denoted p1, . . . , pn that can communi-
cate with each other via point-to-point messages. The system is asynchronous

meaning that there are no bounds on message delays or on the relative speed
of processes. Processes have access to a source of uniformly random bits. The
system is subject to process failures, and we consider several possibilities:

1. Crash failures. A process may fail by crashing, that is, it stops taking
steps. Communication between every pair of processes is reliable. More precisely,
the following properties are satisfied for every processes pi and pj :

– Integrity. If pi receives a message m from pj exactly k times by time t then
pj sent m to pi at least k times before time t.

– No Loss. If pj does not crash and pi sends m to pj exactly k times by time
t then pj eventually receives m from pi at least k times.

2. Omission failures. A faulty process may experience omission failures,
in which it fails to send or receive messages. More precisely, for every processes
pi and pj , the Integrity property above holds, but the No Loss property is guar-
antees to hold only if pi and pj are not faulty.



3. Byzantine failures. A faulty process may behave arbitrarily, including
deviating from its code. The Integrity and No Loss properties hold for every
pair of correct processes pi and pj. If pi or pj is Byzantine, neither property may
hold.

If a process never becomes faulty we say that it is correct.
Power of adversary. When designing fault-tolerant algorithms, we often as-

sume that an intelligent adversary has some control of the system: it may be
able to control the occurrence and the timing of process failures, the message
delays, and the scheduling of processes. Adversaries may have limitations on
their computing power and on the information that they can obtain from the
system. Different algorithms are designed to defeat different types of adversaries.
The simplest adversary is the message-oblivious adversary, which cannot look
at the internal state of processes or the contents of messages. Our algorithms
can defeat a stronger adversary, called the sophisticated adversary, which we
now describe. At any point in the execution, the adversary may choose to make
a process faulty, provided that at most f < n/2 processes are faulty. A faulty
process may not exhibit faulty behavior immediately: with Byzantine failures, a
faulty process may continue to behave well for a while; with omission failures,
a faulty process may continue to handle messages without loss; with crash fail-
ures, a faulty process may continue to execute for a while. The adversary has
full knowledge of the internal state of a faulty process. In particular, it knows all
the messages that it sends and receives. With this information, at any time in
the execution, the adversary can dynamically select which process takes the next
step and which message this process receives (if any). The adversary, however,
operates under the following restrictions: the final schedule must fair, mean-
ing that all correct processes take infinitely many steps, and the messages sent
and received must satisfy the Integrity and No Loss property according to the
type of failure considered (crash, omission, or Byzantine) as described above.
In some cases, we consider a computationally-bounded adversary, which has the
additional requirement that its computation is limited to polynomially-bounded
functions.

3 Problem

We are interested in solving consensus and probabilistic agreement, which we
now define.

Consensus. Each process starts with some initial value and must decide on
a single value. In the classical consensus problem, the following must hold:

– Validity. If a correct process decides on a value v then v is one of the initial
values.

– Agreement. No two correct processes decide differently.
– Termination. Every correct process eventually decides.

Consensus cannot be solved in an asynchronous system subject to failures
[21], so we consider the following weakening of termination:

– Termination with probability one. With probability one, all correct processes
eventually decide.



We are interested in fast algorithms, which we define to be algorithms in
which correct processes decide in constant expected time.

For a system with Byzantine failures, we consider a weakening of consensus
called weak Byzantine agreement, obtained by replacing the validity property
with the following:

– No-Failure Validity. If all processes are correct and a correct process decides
on a value v then v is one of the initial values.1

Probabilistic agreement. Probabilistic agreement is a variant of consensus
in which processes may decide different values with some probability smaller
than one. More precisely, we require the Validity and Termination properties as
defined above, as well as the following:

– Uncertain agreement. With probability at least ρ > 0, no two correct pro-
cesses decide differently.

Here ρ > 0 is some constant. For practical purposes it should be large, say 1/3.
For a system with Byzantine failures, we consider a variant called certified

probabilistic agreement, in which the initial value of a process (whether correct or
Byzantine) is certified by some computationally unforgeable means, as we later
explain. Algorithms will use this certification to provide the validity property.

Cryptographic primitives. The use of cryptography in algorithms can cre-
ate a negligible probability of failure of the algorithm, including non-termination,
due to the adversary breaking the cryptographic primitives by randomly guess-
ing keys. Technically, we say that an algorithm securely implements consensus
(instead of “implements consensus”) to indicate this negligible probability of
failure.

4 Binding gather

Our fast algorithms for benign failures are based on a simple primitive called
binding gather. All correct processes invoke binding gather(v) with some input
value v, and the primitive returns as output a set of values, such that the fol-
lowing holds:

– Validity. Every value in every output set is the input value of some process.
– Binding Commonality. There exists some value v such that v is in every

output set, and v can be determined by an external observer when the first
process outputs its set.

– Termination. All correct processes eventually output some non-empty set of
values.

A value that is in every output set is called a common value. The binding
gather primitive is easy to implement in a system with crash or omission fail-
ures using three asynchronous rounds of a full-information protocol (Section 6.3
extends the primitive and implementation to Byzantine failures):

1 This property implies the standard validity property of weak Byzantine agree-
ment [26], which states that if all processes are correct and they have the same
initial value v then no correct process decides on a value other than v.



Round 1. pi sends its input to all, waits for n−f values, and stores it in set seeni.
Round 2. pi sends set seeni to all, waits for n−f sets, and stores their union in set

seenmorei.

Round 3. pi sends set seenmorei to all, waits for n−f sets, and returns the union

of these sets.

By using another round of a full-information protocol (a total of four rounds),
we can ensure that there exists a set of n−f common values. A similar three
round protocol called get-core appeared in [2]: it obtains a set of n−f com-
mon values where each common value has the first and third properties of
binding gather but does not provide Binding Commonality, a property needed
against sophisticated adversaries. If we used get-core, a sophisticated adversary
could influence which values appear in the common set, and this would break
our running time guarantees.

5 Algorithms for crash failures

We now present algorithms for consensus and probabilistic agreement that toler-
ate crash failures and terminate in constant expected time, assuming n ≥ 2f+1.
The algorithm for consensus uses probabilistic agreement as a building block, so
we start with the latter.

5.1 Fast probabilistic agreement

The fast algorithm for probabilistic agreement is similar to the algorithms in
[18, 24], except that we use binding gather to make it work for n ≥ 2f+1 with
crash failures. Each process pi starts with an initial value vi. The rough idea
of the algorithm is that each process pi picks a random rank for itself (a rank
is a number) and sends to all a message containing its rank and vi. A process
collects n−f such pairs and calls binding gather to share its set of n−f pairs.
Binding gather will return a set of such sets, with the property that at least one
set C of n−f pairs is returned to every process. Each process looks at all pairs
in all sets that it gets from binding gather, finds the largest rank, and decides
on the value associated with that rank. If the ranks are uniformly random, the
true largest rank M will be in C with probability at least (n−f)/n ≥ 1/2, which
will cause all processes to pick M and hence decide on the same value. One
technicality is that the ranks need to be picked from a bounded interval, and
there is a probability that two different processes pick the same rank. We must
choose the interval to be large enough (0 . . . n4−1) so that this collision happens
with probability less than 1/n2. The algorithm is given in Figure 1.

This algorithm works with the simple message-oblivious adversary, but it
does not quite work with the sophisticated adversary: after the adversary learns
the largest rank M , it can coordinate the execution of binding gather to ensure
that C does not include M . To solve this problem, we use secret sharing to hide
the values of the ranks from the adversary until the common value of binding
gather has been determined.

The full algorithm is given in Figure 2. It uses binding gather and n2 copies
of the secret sharing primitives denoted dealer-shareij , shareij , and reconstructij



Process pi has initial value vi and executes the following code:

1. ranki := random number between 0 and n2 − 1
2. send (ranki, vi) to all
3. wait to receive (rankj , vj) from n−f processes j

4. Ri := set of received (rankj , vj)’s
5. Vi := ∪binding-gather(Ri) (* binding-gather outputs a set of sets; flatten it out to Vi *)
6. max rank := max{rank : (rank, ∗) ∈ Vi}
7. choose v such that (max rank, v) ∈ Vi

8. decide(v)

Fig. 1. Fast algorithm for probabilistic agreement with crash failures, n ≥ 2f+1, and
a message-oblivious adversary.

Process pi has initial value vi and executes the following code:

(* part 1: send values and shares *)
1. ri1, . . . , rin := pick n random numbers between 0 and n4 − 1

2. for j = 1..n do dealer-shareij(rij)

3. for j, k = 1..n do fork sharejk() (* run share protocol; it may not return if dealer crashes, so fork *)
4. wait for shareji to return for n−f distinct j’s, and let Si be the set of those j’s

(* processes in Si are those that contribute to pi’s rank *)
5. send (Si, vi, i) to all
6. wait to receive (Sj, vj , j) from n−f processes; let Ji be the set of such messages

(* Ji has data of processes whose rank can be retrieved *)

(* part 2: gather *)
7. bigJ := ∪binding-gather(Ji) (* binding-gather outputs a set of sets; flatten it *)
8. P := {j : (∗, ∗, j) ∈ bigJ} (* P contains processes whose rank can be retrieved *)
9. for each (S, v, j) ∈ bigJ do (Sj , vj) := (S, v) (* extract Sj and vj *)

(* part 3: recover secrets *)
10. for each j, k = 1..n do fork { wait for sharejk to return; rjk := recoverjk() }

(* sharejk or recoverjk may not return, so do in background *)
11. for each j ∈ P do
12. wait for recoverkj to return for all k ∈ Sj

13. rankj :=
P

k∈Sj
rkj mod n4 (* recover j’s rank *)

(* part 4: choose winner and decide *)
14. winner := argmaxj{rankj : j ∈ P} (* winner is process with highest rank *)
15. decide(vwinner)

Fig. 2. Fast algorithm for probabilistic agreement with crash failures, n ≥ 2f+1, and
a sophisticated adversary.

where i, j = 1..n The protocol has four parts. In the first part, pi picks n random
values ri1, . . . , rin. The idea is that we want to hide pi’s rank from pi itself,
because pi could be a faulty process that the adversary has access to. We use
the idea in Feldman and Micali’s protocol [18]: each process will pick a uniform
random value between 0 and n4−1 and pi’s rank will be the sum of n−f such
values (modulo n4), which is also uniformly distributed. Thus, the random value
rij that pi picks is pi’s contribution to the rank of pj . Process pi then uses secret
sharing to distribute shares of the rij ’s to all processes. It then waits to receive
shares of rji for n−f values of j; we let Si denote those values of j. Intuitively, Si

are those j’s that will contribute to the rank of pi. Process pi then sends (Si, vi, i)
to all, where vi is its initial input; other processes will use Si to reconstruct the
rank of pi later, and vi to decide in case pi is the process with the highest
rank. Finally, pi waits for such triples (Sj , vj , j) from n−f processes, and stores
them in Ji. Intuitively, Ji has the data (Sj , vj) of processes whose rank can be



retrieved: they did not crash too early in the protocol. In the second part of the
algorithm, pi calls binding gather with its set Ji, and obtains a bunch of such
sets from other processes, and puts all the triples (Sj , vj , j) obtained in a big set
bigJ. At this point, the common set C of binding gather has been determined, by
definition of binding gather, and with probability at least (n−f)/n− 1/n ≥ 1/3
(assuming f ≥ 1), C includes the process with largest rank and such a process is
unique. Process pi then unravels bigJ to extract a set P of processes and for each
j ∈ P , extracts their values of Sj and vj . In the third part, processes recover the
random numbers and add them together to produce the rank of each process in
P . A process may not be able to recover rkj (i.e., return from recoverkj) since

process pk may have crashed before returning from dealer-sharekj . However, this
does not happen for j ∈ P and k ∈ Sj : for those values of j and k, pj sent a
done message and completed sharekj by definition of P and Sj . Therefore, for
all j ∈ P , pi can retrieve the rank of pj by adding together the appropriate r∗j ’s
mod n4. This is stored in variable rankj . Finally, in part 4, process pi picks the
process in P with largest rank and decides on the value of that process.

5.2 Fast consensus

Our consensus algorithm is obtained by modifying Ben-Or’s algorithm [3], which
is a binary consensus algorithm in which the processes’ initial values must be 0
or 1. The key idea of Ben-Or’s protocol is that, if all processes start a round with
the same estimate, then they all decide in that round. If there is no decision, at
the end of the round some processes will set their estimate to a random bit in the
hope that, if they are very lucky, processes will all end up with the same bit and
therefore will decide in the next round. If all n processes pick a bit randomly,
the probability that they will pick the same bit is exponentially small in n. As a
result, the expected number of rounds until decision is exponentially large in n.

We modify Ben-Or’s algorithm so that, at the end of each round, instead
of using a random coin, processes use an instance of probabilistic agreement to
set their estimate (there is an instance of probabilistic agreement per round).
The rationale is that probabilistic agreement has a high (constant) probability
that processes will pick the same value and hence decide in the next round.
As a result, the expected number of rounds until decision is constant. There is
another more subtle difference between our algorithm and Ben-Or’s. To ensure
agreement, in Ben-Or’s algorithm a process does not change its estimate to a
random value at the end of a round if it believes another process may have
decided. In our algorithm, all processes unconditionally change their estimate
to the decision value of probabilistic agreement. Doing so does not jeopardize
agreement because if a process decides v in a round, all processes will start prob-
abilistic agreement with v and hence will decide v (in probabilistic agreement).
Another difference between the algorithms is that our algorithm is not restricted
to binary consensus: initial values can come from any domain.

Our complete algorithm is shown in Figure 3. Each process maintains an
estimate of the decision in variable vi, which is initially the process initial value.
Processes proceed in rounds k = 1, 2, . . ., where each round has three phases. In
phase 1 of round k, a process sends a (report, k, vi) message with its estimate



Code for each process pi with initial value vi:

1. k := 0
2. while true do
3. k := k + 1

(* phase 1 *)
4. send (REPORT, k, vi) to all
5. wait to receive (REPORT, k, ∗) from n−f processes

(* phase 2 *)
6. if all received (REPORT, k, w) are for the same w

7. then send (PROPOSAL , k, w) to all
8. else send (PROPOSAL , k, ?) to all

9. wait to receive (PROPOSAL , k, ∗) from n−f processes

10. if received some (PROPOSAL , k, w) with w 6= ? then vi := w

11. if all received (PROPOSAL , k, w) are for the same w then decide w

(* phase 3 *)
12. vi := probabilistic-agreement(k, vi) (* run k-th instance of probabilistic agreement with input vi *)

Fig. 3. Algorithm for consensus and n ≥ 2f+1, which uses probabilistic agreement
as a subroutine. By using a fast probabilistic agreement algorithm, we obtain a fast
consensus algorithm.

vi to all, waits to receive n−f reports of round k, and checks whether a majority
of processes reported the same estimate w. If so, in phase 2, a process sends a
(propose, k, w) message to all, otherwise it sends a (propose, k, ?), where “?”
is a special value. There can be either 0 or 1 proposals different from ? in phase
2, because this proposal must have been reported in phase 1 by a majority of
processes. Processes wait for n−f proposals of round k. If all of them are for
the same value w 6= ? then the process decides on w. If one of them is for a
value w 6= ? then the process changes its estimate vi to w. In phase 3, processes
executes a new instance of probabilistic agreement using vi as its initial value,
and then changes vi to the decision.

This algorithm can be easily extended to handle omission failures: we use
the PKI to implement a private reliable send mechanism. Briefly, for p to send a
message m to q privately and reliably, it performs the following. p encrypts and
sends (m, q) to all processes and waits to receive acknowledgements from f+1
processes; a process that receives (m, q) from p sends an acknowledgement to p
and forwards m to q.

6 Algorithms for Byzantine failures using weak sequence

broadcast

We now consider an asynchronous system with Byzantine failures, where n ≥
2f+1. In this setting, it is easy to show that consensus (with probability one
termination) cannot be solved even if processes have access to a public-key in-
frastructure. We therefore consider solutions that use weak sequenced broadcast
as a primitive, described in Section 6.1. We show that this primitive can be
implemented with a minimal TPM. Because the minimal TPM can be imple-
mented in a system with crash failures, it follows that deterministic consensus
is still impossible, even if processes have weak sequenced broadcast (otherwise,
processes could solve consensus in a system with crash failures). Thus, as be-
fore, we have to resort to randomized solutions that guarantee termination with



probability one minus a negligible probability due to the use of cryptography.
Using sequenced broadcast, we show how to implement probabilistic agreement
with Byzantine failures, and then how to implement weak Byzantine agreement.

6.1 Sequenced broadcast and weak sequenced broadcast

Roughly speaking, sequenced broadcast is a type of broadcast that ensures, for a
given sender pi, that all processes deliver the messages of that sender in the same
order. This provides an ordering per sender of messages, similar to FIFO broad-
cast [23].2 This is useful because it prevents the problem of equivocation [12], in
which a Byzantine process can send different values to different processes. In a
system with n ≥ 3f+1, equivocation can be avoided using Bracha’s broadcast
algorithm [5], but here we are concerned about systems with n ≥ 2f+1.

We shall consider two versions of sequenced broadcast, where the stronger
version ensures that all correct processes deliver the same set of messages, and the
weaker version does not. More precisely, we define weak sequenced broadcast in
terms of two primitives, sbcast and sdeliver. We are interested in the k-th message
broadcast by a process, and the k-th message delivered from p by another process.
To make this explicit, when a process p broadcasts m as its k-th message, we
will say that p sbcasts(k, m). We note that k is determined by the order in which
the process calls sbcast, and so it is not a real parameter; we make k explicit just
to make it simpler to match a broadcast with its deliver in algorithms. When a
process q delivers m as its k-th message from p, we will say that q sdelivers(k, m)
from p. We assume that messages broadcast by correct processes are unique,
which can be ensured via sequence numbers. Weak sequenced broadcast satisfies
the following properties:

– Integrity. If processes p and q are correct, and q sdelivers (k, m) from p then
p previously sbcasts(k, m).

– Validity. If correct process p sbcasts(k, m) then eventually all correct pro-
cesses sdeliver(k, m) from p.

– FIFO Agreement: If two correct processes sdeliver (k, m) and (k, m′) from
the same process q then m = m′.

Weak sequenced broadcast allows one correct process to deliver a message
from a sender, and another correct process not to. This is not allowed in sequenced

broadcast, which provides an additional Agreement property similar to reliable
broadcast [23]:

– Agreement. If a correct process sdelivers (k, m) then eventually all correct
processes sdeliver (k, m).

It is easy to implement sequenced broadcast using weak sequenced broadcast.
We now explain how to implement weak sequenced broadcast using a minimal
TPM. The TPM has a secret TPM signing key and provides each process pi with
a private set of registers PCRk (Platform Configuration Registers) initialized to
zero [31]. The TPM allows a process to modify a PCR register only by using

2 FIFO broadcast is defined for systems with crash failures. Sequenced broadcast can
be seen as an extension of FIFO broadcast to systems with Byzantine failures.



the tpm-extend(k, v) function, which sets PCRk := hash(PCRk · v). Function
tpm-quote(k) allows pi to sign (i,PCRk) using the TPM secret key. There are
many PCR registers, but we only use PCR1.

To sbcast(m), process pi calls tpm-extend(1, m), and then calls tpm-quote(1)
to obtain a TPM signature s on (i,PCR1). Next, pi sends m and s to all us-
ing FIFO-send (FIFO-send can be implemented using sequence numbers). Each
process pj keeps a vector Hj [i] with the hash of the sequence of messages that
pj has seen from pi for every i. When pj receives (m, s) from pi, it updates Hj [i]
to mimic the way the TPM of pi updates PCR1. Then pj checks whether s is a
valid signature on (i, Hj [i]). If so, pj sdelivers m, otherwise it ignores m.

The key reason why the algorithm works is that a process cannot set its
PCR1 any way it wants, because hash is a one-way hash function. Once a process
extends PCR1 for k-th time using message m, it is restricted to send m as its
k-th messages to all processes, otherwise m is rejected by correct processes.

6.2 Verifiable Secret Sharing

Our probabilistic agreement algorithm relies on VSS. We now give a simple
VSS implementation for a system with Byzantine failures and n ≥ 2f+1 using
sequenced broadcast, and the cryptographic primitives of encryption, signature,
and zero-knowledge proofs of knowledge. Roughly speaking, it works as follows.
The dealer chooses a degree f polynomial g(x) and sends via sequenced broadcast
a message 〈E1(g(1)), · · · , En(g(n))〉 where Ei(g(i)) is an encryption of the share
of player i using player i’s public encryption scheme. The dealer then provides a
zero-knowledge proof that the message sent is indeed an appropriate encryption
of a degree f polynomial. A player that is convinced by the proof sends an
acknowledgement via sequenced broadcast and the share phase ends once n−f
acknowledgements are received. The algorithm is given in Figure 4.

Code for process pi:
1. procedure dealer-share(vi) { for the dealer process }
2. choose a random polynomial g of degree f such that g(0) = vi

3. sbcast(1, 〈E1(g(1)), · · · , En(g(n))〉) Ej(·) encrypts using pj ’s public key *)
4. do an interactive constant-round zero-knowledge proof with each process on the statement that

E1(g(1)), . . . , En(g(n)) is an encryption of a degree f polynomial

5. procedure share() { for all processes }
6. wait to sdeliver(1, 〈EG1, . . . , EGn〉) from dealer (* if dealer is correct EGj = Ej(g(j)) *)
7. fork {
8. participate in constant-round zero-knowledge proof with dealer that e1, . . . , en is an encryption of

a degree f polynomial
9. if process is convinced of zero-knowledge proof
10. then sbcast(2, DONE) (* if necessary sbcast an empty messages so we can sbcast(2, . . .) *)
11. }
12. wait until sdeliver(2, DONE) from n−f processes

13. procedure recover(): { for all processes }
14. send (i, g(i)) to all
15. wait to receive (j, gj) from n−f processes where Ej(gj) = EGj (* gj must match encrypted values

broadcast by dealer *)
16. find degree polynomial g of degree f going through the n−f values (j, gj) gotten in line 15
17. return g(0)

Fig. 4. Algorithm for securely implementing verifiable secret sharing and n ≥ 2f+1
using sequenced broadcast in a system with Byzantine failures.



6.3 Binding gather with certified values

We now extend the definition of binding gather for a system with Byzantine
failures. Clearly, we cannot require that Byzantine processes do anything, so we
modify its properties as follows:

– Validity. Every value in every output set of a correct process is the input
value of some process.

– Binding Commonality. The exists some value v such that v is in the output
set of every correct process, and v can be determined by an external observer
when the first correct process outputs its set.

– Termination. All correct processes eventually output some value.

(The italics indicate differences with respect to the definition in Section 4.)
Even with these weaker requirements, there is still a problem with the Validity
property: no implementation can provide this property, because if a Byzantine
process acts correctly except that it changes its initial value to a bogus value,
then this bogus value could appear in the output of correct processes.

To address this problem, we use the notion of certified values, which is sim-
ilar to external validity [7]. Roughly speaking, a value v is certified if there is
a legitimacy test that can be applied to v such that bogus values from Byzan-
tine process cannot pass the test. For example, we may require a value to have
signatures from f+1 processes, and the test verifies that the signatures are valid.

More precisely, we define a certification scheme as a set Cert of values and a
set of Boolean procedures checki(v), one for each process pi, such that a byzantine
process cannot generate a value in Cert unless it is given that value (e.g., it
receives the value from a correct process). Intuitively, values in Cert are the
certified values and each checki(v) is a way for process pi to check if v ∈ Cert.
We require two properties: (a) if v 6∈ Cert then checki(v) must return false;
and (b) if v ∈ Cert then there is a time after which checki(v) returns true (it
may return false for a finite period until pi sees evidence from other processes
that v ∈ Cert). Since we rely on cryptographic primitives, we allow a negligible
probability that properties (a) and (b) are violated.

By using certification schemes, we can provide a stronger validity condition.
For example, with Byzantine agreement, we can require that initial values be
certified, where the certification scheme is a parameter of the problem. Thus,
each process has an unforgeable initial value and we can design algorithms that
use the checki procedures to ignore bad values and ensure that correct processes
decide on one of the initial values.

Similarly, we define binding gather with certified values via the three proper-
ties of binding gather with the requirement that initial values must be certified.
Certification schemes are particularly useful in the composition of algorithms,
when the input of an algorithm is an unforgeable output of another algorithm,
as we demonstrate with probabilistic agreement and weak Byzantine agreement.

It is easy to implement binding gather with certified values, by using the
same algorithm of Section 4 except that processes use sequenced broadcast to
send values, and they ignore values that do not pass the certification check.



6.4 Fast probabilistic agreement with certified values

We now describe an algorithm for probabilistic agreement. To satisfy the Validity
property of probabilistic agreement, we need to assume that initial values are
certified according to some certification scheme, as in Section 6.3. We denote the
certification test procedures by checkInputi.

The algorithm for probabilistic agreement with Byzantine failures is similar
to the one of Section 5.1, except that we replace send-to-all with the sequenced
broadcast primitive (Section 6.1), we use the verifiable secret sharing algorithm
for Byzantine failures (Section 6.2), and we use binding gather with certified
values (Section 6.3). Furthermore, the algorithm accepts a message only if it is
delivered by sequenced broadcast, and the value it carries has passed the secret
sharing phase and the certification test of checkInputi.

6.5 Fast weak Byzantine agreement

The algorithm for weak Byzantine agreement is similar to the algorithm for
consensus and crash failures of Section 5.2. The differences are that we use the
probabilistic agreement algorithm with certified values of Section 6.4, using a
certification check that we will explain below. In addition, we replace send-to-
all with sequenced broadcast. We must also check that messages received from
processes follow the protocol. To do so, when a process sbcasts a message m,
it must attach a proof that m follows the algorithm. This proof consists of
the messages that the process sdelivered that causes it to send m, where those
messages themselves must carry proofs that they are legitimate. Thus, in the end,
each message m will contain a history of the execution that justifies m. When a
process waits to receive n−f messages, it ignores messages with incorrect proofs.
At the end of each round, a process calls probabilistic agreement with certified
values using the input 〈vi, Pi〉, where Pi is a proof that vi is legitimate. The
certification test checkInputi used in probabilistic agreement is the function that
verifies that vi is legitimate according to Pi.

Acknowledgments

We would like to thank Sergey Yekhanin for helpful discussions and insights on
the binding gather protocol.

References

1. I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely terminating polynomial protocol for asynchronous
byzantine agreement with optimal resilience. In ACM Symposium on Principles of Distributed Computing,
pages 405–414, New York, NY, USA, 2008. ACM.

2. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics (2nd
edition). John Wiley Interscience, March 2004.

3. M. Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous agreement
protocols. In ACM Symposium on Principles of Distributed Computing, pages 27–30, New York, NY, USA,
1983. ACM.

4. P. Berman and J. A. Garay. Randomized distributed agreement revisited. In FTCS, pages 412–419, 1993.
5. G. Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol. In ACM Symposium on Principles of

Distributed Computing, pages 154–162, New York, NY, USA, 1984. ACM.



6. C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous verifiable secret sharing and proactive
cryptosystems. In CCS ’02: Proceedings of the 9th ACM conference on Computer and communications
security, pages 88–97, New York, NY, USA, 2002. ACM.

7. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous broadcast protocols.
In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryp-
tology, pages 524–541, London, UK, 2001. Springer-Verlag.

8. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantipole: practical asynchronous byzan-
tine agreement using cryptography (extended abstract). In ACM Symposium on Principles of Distributed
Computing, pages 123–132, New York, NY, USA, 2000. ACM.

9. R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience. In ACM Sympo-
sium on Theory of Computing, pages 42–51, New York, NY, USA, 1993. ACM.

10. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, Mar. 1996.

11. B. Chor, M. Merritt, and D. B. Shmoys. Simple constant-time consensus protocols in realistic failure models.
J. ACM, 36(3):591–614, 1989.

12. B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only memory: making adversaries
stick to their word. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, pages 189–204, New York, NY, USA, 2007. ACM.

13. M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo. Low complexity byzantine-resilient consensus. Distrib.
Comput., 17(3):237–249, 2005.

14. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributed consensus.
J. ACM, 34(1):77–97, Jan. 1987.

15. D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor agreement. In ACM Symposium on
Theory of Computing, pages 401–407, New York, NY, USA, 1982. ACM.

16. C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, Apr. 1988.

17. P. Feldman. Asynchronous byzantine agreement in constant expected time, 1989. Unpublished (copy
availbale from M. Ben-Or).

18. P. Feldman and S. Micali. Optimal algorithms for byzantine agreement. In ACM Symposium on Theory of
Computing, pages 148–161, 1988.

19. P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement. SIAM J.
Comput., 26(4):873–933, 1997.

20. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus problems.
Distributed Computing, 1(1):26–39, 1986.

21. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
processor. J. ACM, 32(2):374–382, 1985.

22. S. Haber and W. S. Stornetta. How to time-stamp a digital document. Journal of Cyptology, 3(2):99–111,
Jan. 1991.

23. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems. Techni-
cal Report 94-1425, Computer Science Department, Cornell University, Ithaca, New York, May 1994.

24. J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agreement. In C. Dwork, editor,
CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 445–462. Springer, 2006.

25. R. Kotla and I. Roy, 2010. Personal Communication.
26. L. Lamport. The weak byzantine generals problem. J. ACM, 30(3):668–676, 1983.
27. D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. Trinc: small trusted hardware for large distributed

systems. In NSDI’09: Proceedings of the 6th USENIX symposium on Networked systems design and im-
plementation, pages 1–14, Berkeley, CA, USA, 2009. USENIX Association.

28. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.
29. A. Patra, A. Choudhary, and C. Pandu Rangan. Simple and efficient asynchronous byzantine agreement

with optimal resilience. In ACM Symposium on Principles of Distributed Computing, pages 92–101, New
York, NY, USA, 2009. ACM.

30. M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology EUROCRYPT 1996, pages 190–
199. Springer Verlag, 1996.

31. http://www.trustedcomputinggroup.org/resources/tpm main specification, 2010. As of Feb 2010.


