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ABSTRACT

This paper deals with the emulation of atomic read/write (R/W)
storage in dynamic asynchronous message passing systems. In
static settings, it is well known that atomic R/W storage can be
implemented in a fault-tolerant manner even if the system is com-
pletely asynchronous, whereas consensus is not solvable. In con-
trast, all existing emulations of atomic storage in dynamic systems
rely on consensus or stronger primitives, leading to a popular belief
that dynamic R/W storage is unattainable without consensus.

In this paper, we specify the problem of dynamic atomic R/W
storage in terms of the interface available to the users of such stor-
age. We discover that, perhaps surprisingly, dynamic R/W storage
is solvable in a completely asynchronous system: we present Dy-
naStore, an algorithm that solves this problem. Our result implies
that atomic R/W storage is in fact easier than consensus, even in
dynamic systems.
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1. INTRODUCTION

Distributed systems provide high availability by replicating the
service state at multiple processes. A fault-tolerant distributed sys-
tem may be designed to tolerate failures of a minority of its pro-
cesses. However, this approach is inadequate for long-lived sys-
tems, because over a long period, the chances of losing more than a
minority inevitably increase. Moreover, system administrators may
wish to deploy new machines due to increased workloads, and re-
place old, slow machines with new, faster ones. Thus, real-world
distributed systems need to be dynamic, i.e., adjust their member-
ship over time. Such dynamism is realized by providing users with
an interface to reconfiguration operations that add or remove pro-
cesses.

Dynamism requires some care. First, if one allows arbitrary re-
configuration, one may lose liveness. For example, say that we
build a fault tolerant solution using three processes, p1, p2, and p3.
Normally, the adversary may crash one process at any moment in
time, and the up-to-date system state is stored at a majority of the
current configuration. However, if a user initiates the removal of p;
while p; and p2 are the ones holding the up-to-date system state,
then the adversary may not be allowed to crash p2, for otherwise the
remaining set cannot reconstruct the up-to-date state. Providing a
general characterization of allowable failures under which liveness
can be ensured is a challenging problem.

A second challenge dynamism poses is ensuring safety in the
face of concurrent reconfigurations, i.e., when some user invokes a
new reconfiguration request while another request (potentially ini-
tiated by another user) is under way. Early work on replication with
dynamic membership could violate safety in such cases [8, 22, 10]
(as shown in [27]). Many later works have rectified this problem by
using a centralized sequencer or some variant of consensus to agree
on the order of reconfigurations (see discussion of related work in
Section 2).

Interestingly, consensus is not essential for implementing repli-
cated storage. The ABD algorithm [3] shows that atomic read/write
(R/W) shared memory objects can be implemented in a fault-tolerant
manner even if the system is completely asynchronous. Neverthe-
less, to the best of our knowledge, all previous dynamic storage
solutions rely on consensus or similar primitives, leading to a pop-
ular belief that dynamic storage is unattainable without consensus.

In this work, we address the two challenges mentioned above,
and debunk the myth that consensus is needed for dynamic storage.
We first provide a precise problem specification of a dynamic prob-
lem. To be concrete, we focus on atomic R/W storage, though we
believe the approach we take for defining a dynamic problem can be
carried to other problems. We then present DynaStore, a solution
to this problem in an asynchronous system where processes may



undetectably crash, so that consensus is not solvable. We note that
our solution is given as a possibility proof, rather than as a blueprint
for a new storage system. Given our result that consensus-less solu-
tions are possible, we expect future work to apply various practical
optimizations to our general approach, in order to build real-world
distributed services. We next elaborate on these two contributions.

Dynamic Problem Specification

In Section 3, we define the problem of an atomic R/W register in
a dynamic system. Clearly, the progress of such service is condi-
tioned on certain failure restrictions in the deployed system. It is
well understood how to state a liveness condition of the static ver-
sion of this problem: ¢-resilient R/W storage guarantees progress
if fewer than ¢ processes crash. For an n-process system, it is well
known that ¢-resilient R/W storage exists when ¢ < n/2, and does
not exist when ¢ > n/2 [3].

The liveness condition of a dynamic system needs to also cap-
ture changes introduced by the user. Suppose the system initially
has four processes {p1, p2, p3, p4} in its configuration (also called

view). Initially, any one process may crash. Suppose that p; crashes.

Then, additional crashes would lead to a loss of liveness. Now
suppose the user requests to reconfigure the system to remove p; .
While the request is pending, no additional crashes can happen, be-
cause the system must transfer the up-to-date state from majority
of the previous view to a majority of the new one. However, once
the removal is completed, the system can tolerate an additional
crash among the new view {p2,ps,psa}. Overall, two processes
may crash during the execution. Viewed as a simple threshold con-
dition, this exceeds a minority threshold, which contradicts lower
bounds. However, the liveness condition we will formulate will not
be in the form of a simple threshold; rather, we require crashes to
occur gradually, and adapt to reconfigurations.

A dynamic system also needs to support additions. Suppose the
system starts with three processes {p1, p2, p3}. In order to recon-
figure the system to add a new process p4, a majority of the view
{p1, p2, ps} must be alive to effect the change. Additionally, a ma-
jority of the view {p1, p2, ps, pa} must be alive to hold the state
stored by the system. Again, the condition here is more involved
than a simple threshold. That is, if a user requests to add pa, then
while the request is pending, a majority of both old and new views
need to be alive. Once the reconfiguration is completed, the re-
quirement weakens to a majority of the new view.

In order to provide a protocol-independent specification, we must
expose in the model the completion of reconfigurations. Our ser-
vice interface therefore includes explicit reconfig operations that
allow the user to add and remove processes. These operations re-
turn OK when they complete. Given these, we state the following
requirement for liveness for dynamic R/W storage: At any moment
in the execution, let the current view consist of the initial view with
all completed reconfiguration operations (add/remove) applied to
it. We require that the set of crashed processes and those whose
removal is pending be a minority of the current view, and of any
pending future views. Moreover, like previous reconfigurable stor-
age algorithms [19, 12], we require that no new reconfig operations
will be invoked for “sufficiently long” for the started operations to
complete. This is formally captured by assuming that only a finite
number of reconfig operations are invoked.

Note that a dynamic problem is harder than the static variant. In
particular, a solution to dynamic R/W is a fortiori a solution to the
static R/W problem. Indeed, the solution must serve read and write
requests, and in addition, implement reconfiguration operations. If
deployed in a system where the user invokes only read and write
requests, and never makes use of the reconfiguration interface, it

must solve the R/W problem with precisely the same liveness con-
dition, namely, tolerating any minority of failures. Similarly, dy-
namic consensus is harder than static consensus, and is therefore a
fortiori not solvable in an asynchronous setting with one crash fail-
ure allowed. As noted above, in this paper, we focus on dynamic
R/W storage.

DynaStore: Dynamic Atomic R/W Storage

Our algorithm does not need consensus to implement the recon-
figuration operations. Intuitively, previous protocols used consen-
sus, virtual synchrony, or a sequencer, in order to provide processes
with an agreed-upon sequence of configurations, so that the mem-
bership views of processes do not diverge. The key observation in
our work is that it is sufficient that such a sequence of configura-
tions exists, and there is no need for processes to know precisely
which configurations belong to this sequence, as long as they have
some assessment which includes these configurations, possibly in
addition to others which are not in the sequence. In order to enable
this property, in Section 4 we introduce weak snapshots, which are
easily implementable in an asynchronous system. Roughly speak-
ing, such objects support update and scan operations accessible by
a given set of processes, such that scan returns a set of updates that
is guaranteed to include the first update made to the object (but the
object cannot identify which update that is).

In DynaStore, which we present in Section 5, each view w has
a weak snapshot object ws(w), which stores reconfiguration pro-
posals for what the next view should be. Thus, we can define a
unique global sequence of views, as the sequence that starts with
some fixed initial view, and continues by following the first pro-
posal stored in each view’s ws object. Although it is impossible for
processes to learn what this sequence is, they can learn a DAG of
views that includes this sequence as a path. They do this by creat-
ing a vertex for the current view, querying the ws object, creating
an edge to each view in the response, and recursing. Reading and
writing from a chain of views is then done in a manner similar to
previous protocols, e.g., [19, 12, 5, 23, 24].

Summary of Contributions

In summary, our work makes two contributions.

e We define a dynamic R/W storage problem that includes a
clean and explicit liveness condition, which does not depend
on a particular solution to the problem. The definition cap-
tures a dynamically changing resilience requirement, corre-
sponding to reconfiguration operations invoked by users. The
approach easily carries to other problems, such as consensus.
As such, it gives a clean extension of existing static problems
to the dynamic setting.

e We discover that dynamic R/W storage is solvable in a com-
pletely asynchronous system with failures, by presenting a
solution to this problem. Along the way we define a new
abstraction of weak snapshots, employed by our solution,
which may be useful in its own right. Our result implies
that the dynamic R/W is weaker than the (dynamic) consen-
sus problem, which is not solvable in this setting. This was
known before for static systems, but not for the dynamic ver-
sion. The result counters the intuition that emanates from all
previous dynamic systems, which used agreement to handle
configuration changes.

2. RELATED WORK

Several existing solutions can be viewed in retrospect as solving
a dynamic problem. Most closely related are works on reconfig-



urable R/W storage. RAMBO [19, 12] solves a similar problem to
the one we have formulated above; other works [21, 23, 24] extend
this concept for Byzantine fault tolerance. All of these works have
processes agree upon a unique sequence of configuration changes.
Some works use an auxiliary source (such as a single reconfigurer
process or an external consensus algorithm) to determine config-
uration changes [18, 11, 19, 12, 21, 24], while others implement
fault-tolerant consensus decisions on view changes [5, 23]. In con-
trast, our work implements reconfigurable R/W storage without any
agreement on view changes.

Since the closest related work is on RAMBO, we further elabo-
rate on the similarities and differences between RAMBO and Dy-
naStore. In RAMBO, a new configuration can be proposed by any
process, and once it is installed, it becomes the current configura-
tion. In DynaStore, processes suggest changes and not configura-
tions, and thus, the current configuration is determined by the set
of all changes proposed by complete reconfigurations. For exam-
ple, if a process suggests to add p: and to remove p2, while another
process concurrently suggests to add ps, DynaStore will install a
configuration including both p; and p3 and without p2, whereas in
RAMBO there is no guarantee that any future configuration will
reflect all three proposed changes, unless some process explicitly
proposes such a configuration. In DynaStore, a quorum of a con-
figuration is any majority of its members, whereas RAMBO allows
for general quorum-systems, specified explicitly for each configu-
ration by the proposing process. In both algorithms, a non-faulty
quorum is required from the current configuration. A central idea in
allowing dynamic changes is that a configuration can be replaced,
after which a quorum of the old configuration can crash. In Dyna-
Store, a majority of a current configuration C'is allowed to crash as
soon as C' is no longer current. In RAMBO, two additional condi-
tions are needed: C' must be garbage-collected at every non-faulty
process p € C, and all read and write operations that began at p
before C' was garbage-collected must complete. Thus, whereas in
DynaStore the conditions allowing a quorum of C' to fail can be
evaluated based on events visible to the application, in RAMBO
these conditions are internal to the algorithm. Note that if some
process p € C' might fail, it might be impossible for other pro-
cesses to learn whether p garbage-collected C' or not. Assuming
that all quorums required by RAMBO and DynaStore are respon-
sive, both algorithms require additional assumptions for liveness.
In both, the liveness of read and write operations is conditioned
on the number of reconfigurations being finite. In addition, in
both algorithms, the liveness of reconfigurations does not depend
on concurrent read and write operations. However, whereas re-
configurations in RAMBO rely on additional synchrony or failure-
detection assumptions required for consensus, reconfigurations in
DynaStore, just like its read and write operations, only require the
number of reconfigurations to be finite.

View-oriented group communication systems provide a member-
ship service whose task is to maintain a dynamic view of active
members. These systems solve a dynamic problem of maintaining
agreement on a sequence of views, and additionally provide certain
services within the members of a view, such as atomic multicast
and others [6]. Maintaining agreement on group membership in it-
self is impossible in asynchronous systems [4]. However, perhaps
surprisingly, we show that the dynamic R/W problem is solvable in
asynchronous systems. This appears to contradict the impossibility
but it does not: We do not implement group membership because
our processes do not have to agree on and learn a unique sequence
of view changes.

The State Machine Replication (SMR) approach [15, 25] pro-
vides a fault tolerant emulation of arbitrary data types by forming

agreement on a sequence of operations applied to the data. Paxos
[15] implements SMR, and allows one to dynamically reconfigure
the system by keeping the configuration itself as part of the state
stored by the state machine. Another approach for reconfigurable
SMR is to utilize an auxiliary configuration-master to determine
view changes, and incorporate directives from the master into the
replication protocol. This approach is adopted in several practical
systems, e.g., [17, 20, 26], and is formulated in [16]. Naturally, a
reconfigurable SMR can support our dynamic R/W memory prob-
lem. However, our work solves it without using the full generality
of SMR and without reliance on consensus.

An alternative way to break the minority barrier in R/W emula-
tion is by strengthening the model using a failure detector. Delporte
etal. [9] identify the weakest failure detector for solving R/W mem-
ory with arbitrary failure thresholds. Their motivation is similar
to ours— solving R/W memory with increased resilience threshold.
Unlike our approach, they tackle more than a minority of failures
right from the outset. They identify the quorums failure detector as
the weakest detector required for strengthening the asynchronous
model, in order to break the minority resilience threshold. Our ap-
proach is incomparable to theirs, i.e., our model is neither weaker
nor stronger. On the one hand, we do not require a failure detector,
and on the other, we allow the number to failures to exceed a minor-
ity only after certain actions are taken. Moreover, their model does
not allow for additions as ours does. Indeed, our goal differs from
[9], namely, to model dynamic reconfiguration in which resilience
is adaptive to actions by the processes.

3. DYNAMIC PROBLEM DEFINITION

The goal of our work is to implement a read/write service with
atomicity guarantees. The storage service is deployed on a collec-
tion of processes that interact using asynchronous message passing.
We assume an unknown, unbounded and possibly infinite universe
of processes II. Communication channels between all processes
are reliable. Below we revisit the definition of reliable links in a
dynamic setting.

The service stores a value v from a domain V and offers an in-
terface for invoking read and write operations and obtaining their
result. Initially, the service holds a special value 1. ¢ V. The se-
quential specification for this service is as follows: In a sequence of
operations, a read returns the latest written value or L if none was
written. Atomicity [14] (also called linearizability [13]) requires
that for every execution, there exist a corresponding sequential ex-
ecution, which conforms with the operation precedence relation,
and which satisfies the sequential specification.

In addition to the above API, the service exposes an interface for

invoking reconfigurations. We define Changesdéf{Remove, Add} <11
We informally call any subset of Changes a set of changes. A view
is a set of changes. A reconfig operation takes as parameter a set
of changes c¢ and returns OK. We say that a change w is proposed
in the execution if a reconfig(c) operation is invoked s.t. w € c.
A process p; is active if p; does not crash, some process invokes
a reconfig operation to add p;, and no process invokes a reconfig
operation to remove p;. We do not require all processes in II to
start taking steps from the beginning of the execution, but instead
we assume that if p; is active then p; takes infinitely many steps (if
p; is not active then it may stop taking steps).

For a set of changes w, the removal-set of w, denoted w.remove,
is the set {i | (Remove, i) € w}. The join set of w, denoted w.join,
is the set {7 | (Add, i) € w}. Finally, the membership of w, denoted
w.members, is the set w.join\w.remove.

At any time ¢ in the execution, we define V() to be the union of
all sets ¢ s.t. a reconfig(c) completes by time ¢. Note that removals



are permanent, that is, a process that is removed will never again
be in members. More precisely, if a reconfiguration removing p;
from the system completes at time %o, then p; is excluded from
V (t).members, for every t > to'. We assume a non-empty view
V' (0) which is initially known to every process in the system and
we say, by convention, that a reconfig(V' (0)) completes by time
0. Let P(t) be the set of pending changes at time ¢, i.e., for each
element w € P(t) some process invokes a reconfig(c) operation
s.t. w € c by time ¢, and no process completes such a reconfig
operation by time ¢t. Denote by F'(t) the set of processes which
have crashed by time ¢.

Intuitively, only processes that are members of the current sys-
tem configuration should be allowed to initiate actions. To capture
this restriction, read, write and reconfig operations at a process p;
are initially disabled, until enable operations occurs at p;. Intu-
itively, any pending future view should have a majority of processes
that did not crash and were not proposed for removal; we specify a
simple condition sufficient to ensure this. A dynamic R/W service
guarantees the following liveness properties:

Definition 1. [Dynamic Service Liveness]
If at every time ¢ in the execution, fewer than |V (t).members|/2

processes out of V' (t).membersUP(t) . join are in F'(t)UP(t).remove,

and the number of different changes proposed in the execution is fi-
nite, then the following holds:

1. Eventually, the enable operations event occurs at every ac-
tive process that was added by a complete reconfig operation.

2. Every operation invoked at an active process eventually com-
pletes.

A common definition of reliable links states that if processes p;
and p; are “correct”, then every message sent by p; is eventually
received by p;. We adapt this definition to a dynamic setting as
follows: for a message sent at time ¢, we require eventual delivery
if both processes are active and j € V(t).join U P(t).join, i.e., a
reconfig(c) operation was invoked by time ¢ s.t. (Add, j) € c.

4. THE WEAK SNAPSHOT ABSTRACTION

A weak snapshot object S accessible by a set P of processes
supports two operations, update;(c) and scan;(), for a process
pi € P. The update;(c) operation gets a value ¢ and returns OK,
whereas scan;() returns a set of values. Note that the set P of
processes is fixed (i.e., static). We require the following semantics
from scan and update operations:

NVI1 Let o be a scan;() operation that returns C. Then for each
¢ € C, an update(c) operation is invoked by some process
prior to the completion of o.

NV2 Let o be a scan;() operation that is invoked after the com-
pletion of an update;(c) operation, and that returns C'. Then

C #0.

NV3 Let o be a scan;() operation that returns C' and let o’ be a
scan;() operation that returns C’ and is invoked after the
completion of 0. Then C' C C".

NV4 There exists ¢ such that for every scan() operation that re-
turns C # (), it holds that ¢ € C.

NVS If some majority M of processes in P keep taking steps
then every scan;() and update;(c) invoked by every process
pi €M eventually completes.

'In practice, one can add back a process by changing its id.

Algorithm 1 Weak snapshot - code for process p;.

1: operation update;(c)

2:  ifcollect() = (0 then

3: Meml[i].Write(c)

4:  return OK

5: operation scan; ()

6:  C « collect()

7:  if C = 0 then return
8:  C « collect()

9:  return C

10: procedure collect()

11:  C <0

12:  foreachp, € P

13: ¢ < Mem[k].Read()
14: ifc# LthenC — CU{c}

15:  return C

Although these properties bear resemblance to the properties of
atomic snapshot objects [1], NV1-NV5 define a weaker abstrac-
tion: we do not require that all updates are ordered as in atomic
snapshot objects, and even in a sequential execution, the set re-
turned by a scan does not have to include the value of the most
recently completed update that precedes it. Intuitively, these prop-
erties only require that the “first” update is seen by all scans that
see any updates. As we shall see below, this allows for a simpler
implementation than of a snapshot object.

DynaStore will use multiple weak snapshot objects, one of each
view w. The weak snapshot of view w, denoted ws(w), is acces-
sible by the processes in w.members. To simplify notation, we de-
note by update,(w, ¢) and scan;(w) the update and scan opera-
tion, respectively, of process p; of the weak snapshot object ws(w).
Intuitively, DynaStore uses weak snapshots as follows: in order to
propose a set of changes c to the view w, a process p; invokes
update;(w, c); p; can then learn proposals of other processes by
invoking scan; (w), which returns a set of sets of changes.

Implementation.

Our implementation of scan and update is shown in Algorithm 1.
It uses an array Mem of | P| single-writer multi-reader (SWMR)
atomic registers, where all registers are initialized to L. Such reg-
isters support Read() and Write(c) operations s.t. only process
p; € P invokes Meml[i].Write(c) and any process p; € P can
invoke Mem[i].Read(). The implementation of such registers in
message-passing systems is described in the literature [3].

A scan;() reads from all registers in Mem by invoking collect,
which returns the set C' of values found in all registers. After invok-
ing collect once, scan;() checks whether the returned C' is empty.
If so, it returns (), and otherwise invokes collect one more time. An
update;(c) invokes collect, and in case ) is returned, writes ¢ to
Mem(i]. Intuitively, if collect() returns a non-empty set then an-
other update is already the “first” and there is no need to perform
a Write since future scan operations would not be obligated to ob-
serve it. In DynaStore, this happens when some process has already
proposed changes to the view, and thus, the weak snapshot does not
correspond to the most up-to-date view in the system and there is
no need to propose additional changes to this view.

Standard emulation protocols for atomic SWMR registers [3]
guarantee integrity (property NV1) and liveness (property NV5).
We next explain why Algorithm 1 preserves properties NV2-NV4;
the formal proof of correctness appears in the full paper [2]. First,
notice that at most one Mem/[i]. Write operation can be invoked in
the execution, since after the first Mem|[:]. Write operation com-
pletes, any collect invoked by p; (the only writer of this register)



will return a non-empty set and p; will never invoke another Write.
This together with atomicity of all registers in Mem implies prop-
erties NV2-NV3. Property NV4 stems from the fact that every
scan() operation that returns C' # ) executes collect twice. Ob-
serve such operation o that is the first to complete one collect. Any
other scan() operation o’ begins its second collect only after o com-
pletes its first collect. Atomicity of the registers in Mem along with
the fact that each register is written at-most once, guarantees that
any value returned by a Read during the first collect of o will be
read during the second collect of o’.

S. DYNASTORE

This section describes DynaStore, an algorithm for multi-writer
multi-reader (MWMR) atomic storage in a dynamic system, which
is presented in Algorithm 2. A key component of our algorithm is a
procedure ContactQ (lines 31-41) for reading and writing from/to
a quorum of members in a given view, used similarly to the com-
municate procedure in ABD [3]. When there are no reconfigura-
tions, ContactQ is invoked twice by the read and write operations
— once in a read-phase and once in a write-phase. More specif-
ically, both read and write operations first execute a read-phase,
where they invoke ContactQ to query a quorum of the processes
for the latest value and timestamp, after which both operations ex-
ecute a write-phase as follows: a read operation invokes ContactQ
again to write-back the value and timestamp obtained in the read-
phase, whereas a write operation invokes ContactQ with a higher
and unique timestamp and the desired value.

To allow reconfiguration, the members of a view also store in-
formation about the current view. They can change the view by
modifying this information at a quorum of the current view. We
allow the reconfiguration to occur concurrently with any read and
write operations. Furthermore, once reconfiguration is done, we
allow future reads and writes to use (only) the new view, so that
processes can be expired and removed from the system. Hence,
the key challenge is to make sure that no reads linger behind in the
old view, while updates are made to the new view. Atomicity is
preserved using the following strategy.

e The read-phase is modified so as to first read information on
reconfiguration, and then read the value and its timestamp.
If a new view is discovered, the read-phase repeats with the
new view.

e The write-phase, which works in the last view found by the
read-phase, is modified as well. First, it writes the value and
timestamp to a quorum of the view, and then, it reads the
reconfiguration information. If a new view is discovered, the
protocol goes back to the read-phase in the new view (the
write-phase begins again when the read-phase ends).

e The reconfig operation has a preliminary phase, writing in-
formation about the new view to the quorum of the old one.
It then continues by executing the phases described above,
starting in the old view.

The core of a read-phase is procedure ReadInView, which reads
the configuration information (line 67) and then invokes ContactQ

to read the value and timestamp from a quorum of the view (line 68).

It returns a non-empty set if a new view was discovered in line 67.
Similarly, procedure WriteInView implements the basic functional-
ity of the write-phase, first writing (or writing-back) the value and
timestamp by invoking ContactQ in line 73, and then reading con-
figuration information in line 74 (we shall explain lines 71-72 in
Section 5.3).

First, for illustration purposes, consider a simple case where only
one reconfiguration request is ever invoked, from w; to wa. We
shall refer to this reconfiguration operation as RC. The main in-
sight into why the above regime preserves read/write atomicity is
the following. Say that a write operation performs a write-phase
W writing in w, the value v with timestamp ¢s. Then there are
two possible cases with respect to RC. One is that RC’s read-phase
observes W. Hence, RC’s write-phase writes-back a value into w2,
whose timestamp is at least as high as ts. Otherwise, RC’s read-
phase does not observe WW. This means that W’s execution of Con-
tactQ writing a quorum of w1 did not complete before RC invoked
ContactQ during its read-phase, and so W starts to read w1 ’s con-
figuration information after RC’s preliminary phase has completed,
updating this information. Hence, W observes ws and the write
operation continues in wz (notice that if a value v” with timestamp
higher than ¢s is found in w2 then the write will no longer send v,
and instead simply writes back v’ to a quorum of ws).

In our example above, additional measures are needed to pre-
serve atomicity if several processes concurrently propose changes
to wi. Thus, the rest of our algorithm is dedicated to the complex-
ity that arises due to multiple contending reconfiguration requests.
Our description is organized as follows: Section 5.1 introduces the
pseudo-code of DynaStore, and clarifies its notations and atomicity
assumptions. Section 5.2 presents the DAG of views, and shows
how every operation in DynaStore can be seen as a traversal on
that graph. Section 5.3 discusses reconfig operations. Finally, Sec-
tion 5.4 presents the notion of established views, which is central to
the analysis of DynaStore. Proofs are deferred to the full paper [2].

5.1 DynaStore Basics

DynaStore uses operations, upon clauses, and procedures. Op-
erations are invoked by the user, whereas upon-clauses are event
handlers — they are actions that may be triggered whenever their
condition is satisfied. Procedures are called from an operation. In
the face of concurrency, operations and upon clauses act like sepa-
rate monitors: at most one of each kind can be executed at a time.
Note that an operation and an upon-clause might execute concur-
rently. In addition, all accesses to local variables are atomic (even
if accessed by an operation and an upon-clause concurrently), and
when multiple local variables are assigned as a tuple (e.g., line 72),
the entire assignment is atomic. Operations and local variables at
process p; are denoted with subscript 4.

Operations and upon-clauses access different variables for stor-
ing the value and timestamp: v; and ts; are accessed in upon-

clauses, whereas operations (and procedures) manipulate v;*** and

tsi**®. Procedure ContactQ sends a write-request including v;***
and ts;"*” (line 35) when writing a quorum, and a read-request
(line 36) when reading a quorum (msgNum,, a local sequence num-
ber, is also included in such messages). When p; receives a write-
request, it updates v; and ts; if the received timestamp is bigger
than ts;, and sends back a REPLY message containing the sequence
number of the request (line 45). When a read-request is received,
p; replies with v;, ts;, and the received sequence number (line 46).

Every process p; executing Algorithm 2 maintains a local es-
timation of the latest view, curView; (line 9), initialized to V' (0)
when the process starts. Although p; is able to execute all event-
handlers immediately when it starts, recall that invocations of read,
write or reconfig operations at p; are only allowed once they are
enabled for the first time; this occurs in line 11 (for processes in
V(0)) or in line 81 (for processes added later). If p; discovers that
it is being removed from the system, it simply halts (line 53). In
this section, we denote changes of the form (Add, i) by (+,) and
changes of the form (Remove, i) by (—, ).



Algorithm 2 Code for process p;.

1:
2
3
4
5:
6:
7.
8
9
0
1

38:
39:
40:
41:

42:
43:
44.
45:
46:

state
v; € VU {L}, initially L
ts; € Ng x (ITU{L}), initially (0, L)
v € VU {L}, initially L
tsi**® € No x (ITU {L}), initially (0, L)
pickNewTS; € {FALSE, TRUE}, initially FALSE
M;: set of messages, initially ()
msgNum; € No, initially O
curView; € Views, initially V (0)

// latest value received in a WRITE message

/I timestamp corresponding to v; (timestamps have selectors num and pid)

/I 1atest value observed in Traverse
// timestamp corresponding to v;"**

/I whether Traverse should pick a new timestamp

// counter for sent messages
// latest view

10: initially:
11:

12:
13:
14:
15:
16:

17:
18:
19:
20:
21:

22:
23:
24
25:
26:

27:
28:
29:
30:

31:
32:
33:
34
35:
36:
37:

if (i € V(0).join) then enable operations

operation read; ():
pickNewTS; < FALSE
newView « Traverse((), 1)
NotifyQ(newView)
return v;"%*

operation wrife; (v):
pickNewTS; < TRUE
newView «— Traverse({), v)
NotifyQ(newView)
return OK

operation reconfig,(cng):
pickNewTS,; < FALSE
newView «— Traverse(cng, 1)
NotifyQ(newView)
return OK

procedure NotifyQ(w)
if did not receive (NOTIFY, w) then
send (NOTIFY, w) to w.members

wait for (NOTIFY, w) from majority of w.members

procedure ContactQ(msgType, D)

M; — 0

msgNum,; < msgNum, + 1;

if msgType = W then
send (REQ, W, msgNum,, v;**" ts]**) to D

else send (REQ, R, msgNum,) to D

wait until M; contains a (REPLY, msgNum,, - - -)
from a majority of D

if msgType = R then
tm «— max{t:(REPLY, msgNum,, v,t) is in M;}
vm «— value corresponding to tm
if tm > ts°% then (vi"*%, ts]"*%)«—(vmn, tm)

upon receiving (REQ, msgType, num, v, ts) from p;:
if msgType = w then
if (ts > ts;) then (v;,ts;) « (v,ts)
send (REPLY, num) to p;
else send message (REPLY, num, v;, ts;) to p;

47:
48:
49:
50:
51:
52:
53:
54.
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

66:
67:
68:
69:

70:
71:
72:

73:
74
75:

76:
77:
78:
79:
80:
81:
82:

83:
84:

procedure Traverse(cng, v)
desiredView <« curView; U cng
Front — {curView;}
do
s «— min{|{| : £ € Front}
w<—any { € Fronts.t. || = s
if (i & w.members) then halt
if w # desiredView then
update,(w, desiredView\w)
ChangeSets < ReadInView(w)
if ChangeSets # () then
Front — Front \ {w}
for each ¢ € ChangeSets
desiredView <+ desiredView U c
Front «— Front U {w U c}
else ChangeSets < WritelnView(w, v)
while ChangeSets #
curView; < desiredView
return desiredView

procedure ReadlnView(w)
ChangeSets — scan;(w)
ContactQ(R, w.members)
return ChangeSets

procedure WriteInView(w, v)
if pickNewTS, then
(pickNewTS,;, vi"%®  ts]**®) «—
(FALSE, v, (ts{**".num + 1, 1))
ContactQ(W, w.members)
ChangeSets — scan; (w)
return ChangeSets

upon receiving (NOTIFY, w) for the first time:
send (NOTIFY, w) to w.members
if (curView; C w) then
pause any ongoing Traverse
curView; < w
if (. € w.join) then enable operations
if paused in line 79, restart Traverse from line 48

upon receiving (REPLY, - - -):
add the message and its sender-id to M;
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Figure 1: Example DAG of views.

5.2 Traversing the Graph of Views

Weak snapshots organize all views into a DAG, where views are
the vertices and there is an edge from a view w to a view w’ when-
ever an update; (w, ¢) has been made in the execution by some pro-
cess j € w.members, updating ws(w) to include the change ¢ # ()
s.t. w' = wUc; || can be viewed as the weight of the edge — the
distance between w’ and w in changes. Our algorithm maintains
the invariant that ¢ N w = (), and thus w’ always contains more
changes than w, i.e., w C w’. Hence, the graph of views is acyclic.

The main logic of Algorithm 2 lies in procedure Traverse, which
is invoked by all operations. This procedure traverses the DAG of
views, and transfers the state of the emulated register from view to
view along the way. Traverse starts from the view curView;. Then,
the DAG is traversed in an effort to find all membership changes in
the system; these are collected in the set desiredView. After find-
ing all changes, desiredView is added to the DAG by updating the
appropriate ws object, so that other processes can find it in future
traversals.

The traversal resembles the well-known Dijkstra algorithm for
finding shortest paths from some single source [7], with the impor-
tant difference that our traversal modifies the graph. A set of views,
Front, contains the vertices reached by the traversal and whose out-
going edges were not yet inspected. Initially, Front = {curView;}
(line 49). Each iteration processes the vertex w in Front closest to
curView; (lines 51 and 52).

During an iteration of the loop in lines 50-63, it might be that
p; already knows that w does not contain all proposed member-
ship changes. This is the case when desiredView, the set of changes
found in the traversal, is different from w. In this case, p; installs an
edge from w to desiredView using update; (line 55). As explained
in Section 4, in case another update to ws(w) has already com-
pleted, update does not install an additional edge from wj; the only
case when multiple outgoing edges exist is if they were installed
concurrently by different processes.

Next, p; invokes ReadInView(w) (line 56), which reads the state
and configuration information in this view, returning all edges out-
going from w found when scanning ws(w) in line 67. By property
NV2, if p; or another process had already installed an edge from w,
a non-empty set of edges is returned from ReadInView. If one or
more outgoing edges are found, w is removed from Front, the next
views are added to Front, and the changes are added to desiredView
(lines 59-61). If p; does not find outgoing edges from w, it invokes
WriteInView(w) (line 62), which writes the latest known value to
this view and again scans ws(w) in line 74, returning any outgoing

edges that are found. If here too no edges are found, the traversal
completes.

Notice that desiredView is chosen in line 52 only when there are
no other views in Front, since it contains the union of all views
observed during the traversal, and thus any other view in Front must
be of smaller size (i.e., contain fewer changes). Moreover, when
w # desiredView is processed, the condition in line 54 evaluates to
true, and ReadInView returns a non-empty set of changes (outgoing
edges) by property NV2. Thus, WriteInView(w, *) is invoked only
when desiredView is the only view in Front, i.e., w = desiredView
(this transfers the state found during the traversal to desiredView,
the latest-known view). For the same reason, when the traversal
completes, Front = {desiredView}. Then, desiredView is assigned
to curView; in line 64 and returned from Traverse.

To illustrate such traversals, consider the example in Figure 1.
Process p; invokes Traverse and let initView be the value of curView;
when Traverse is invoked. Assume that initView.members includes
at least p; and p;, and that cng = () (this parameter of Traverse
will be explained in Section 5.3). Initially, its Front, marked by a
rectangle in Figure 1, includes only initView, and desiredView =
initView. Then, the condition in line 54 evaluates to false and p; in-
vokes ReadInView(initView), which returns {{(+, 3)}, {(+,5)}.
{(—,1), (+,4)}}. Next, p; removes initView from Front and adds
vertices V1, Vo and V3 to Front as shown in Figure 1. For ex-
ample, V3 results from adding the changes in {(—, 1), (+,4)} to
initView. At this point, desiredView = initViewJ{(+,3), (+,5),
(—,1), (+,4)}. In the next iteration of the loop in lines 50-63,
one of the smallest views in Front is processed. In our scenario,
Vi is chosen. Since Vi # desiredView, p; installs an edge from
Vi to desiredView. Suppose that no other updates were made to
ws(V1) before p;’s update completes. Then, ReadInView(V1) re-
turns {{(+,5), (—, 1), (+,4)}} (properties NV1 and NV2). Then,
V1 is removed from Front and V4 = V4 U {(+,5), (—,1), (+,4)}
is added to Front. In the next iteration, an edge is installed from V>
to V4 and V5 is removed from Front.

Now, the size of V3 is smallest in Front, and suppose that an-
other process p; has already completed update;(Vs, {(+,7)}). p:i
executes update (line 55), however since an outgoing edge already
exists, a new edge is not installed. Then, ReadInView(Vs) is in-
voked and returns {{(+,7)}}. Next, V3 is removed from Front,
Vs = Va U{(+,7)} is added to Front, and (+,7) is added to
desiredView. Now, Front = {Vi, V5}, and we denote the new de-
siredView by V. When V} and Vs are processed, p; installs edges
from V4 and Vs to V. Suppose that ReadlnView of V4 and Vs in
line 56 return only the edge installed in the preceding line. Thus, V4



and V5 are removed from Front, and Vs is added to Front, resulting
in Front = {Vs}. During the next iteration ReadInView(Vs) and
WriteInView(Vs) execute and both return ) in our execution. The
condition in line 63 terminates the loop, Vs is assigned to curView;
and Traverse completes returning Vs.

5.3 Reconfigurations (Liveness)

A reconfig(cng) operation is similar to a read, with the only dif-
ference that desiredView initially contains the changes in cng in ad-
dition to those in curView; (line 48). Since desiredView only grows
during a traversal, this ensures that the view returned from 7Tra-
verse includes the changes in cng. As explained earlier, Front =
{desiredView} when Traverse completes, which means that de-
siredView appears in the DAG of views.

When a process p; completes WriteInView in line 62 of Tra-
verse, the latest state of the register has been transfered to desired-
View, and thus it is no longer necessary for other processes to start
traversals from earlier views. Thus, after Traverse completes re-
turning desiredView, p; invokes NotifyQ with this view as its pa-
rameter (lines 15, 20 and 25), to let other processes know about
the new view. NotifyQ(w) sends a NOTIFY message (line 29) to
w.members. A process receiving such a message for the first time
forwards it to all processes in w.members (line 77), and after a
NOTIFY message containing the same view was received from a
majority of w.members, NotifyQ returns. In addition to forwarding
the message, a process p; receiving (NOTIFY, w) checks whether
curView; C w (i.e., w is more up-to-date than curView;), and if so
it pauses any ongoing Traverse, assigns w to curView;, and restarts
Traverse from line 48. Restarting Traverse is necessary when p;
waits for responses from a majority of some view w’ where less
than a majority of members are active. Intuitively, Definition 1 im-
plies that w’ must be an old view, i.e., some reconfig operation com-
pletes proposing new changes to system membership. We prove in
the full paper [2] that in this case p; will receive a (NOTIFY, w)
message s.t. curView; C w and restart its traversal.

Note that when a process p; restarts Traverse, p; may have an
outstanding scan; or update; operation on a weak snapshot ws(w)
for some view w, in which case p; restarts Traverse without com-
pleting the operation. Later, it is possible that p; needs to invoke
another operation on ws(w). In that case, we require that p; first
terminates previous outstanding operations on ws(w) before it in-
vokes the new operation. The mechanism to achieve this is a simple
queue, and it is not illustrated in the code.

Restarts of Traverse introduce an additional potential compli-
cation for write operations: suppose that during its execution of
write(v), p; sends a WRITE message with v and a timestamp ¢s. It
is important that if Traverse is restarted, v is not sent with a dif-
ferent timestamp (unless it belongs to some other write operation).
Before the first message with v is sent, we set the pickNewTS; flag
to false (line 72). The condition in line 71 prevents Traverse from
re-assigning v to v;"*® or incorrect ts;"*”, even if a restart occurs.

In the full paper [2] we prove that DynaStore preserves Dynamic
Service Liveness (Definition 1). Thus, liveness is conditioned on
the number of different changes proposed in the execution being
finite. In reality, only the number of such changes proposed con-
currently with every operation has to be finite. Then, the number of
times Traverse can be restarted during that operation is finite and so
is the number of views encountered during the traversal, implying
termination.

5.4 Sequence of Established Views (Safety)

Our traversal algorithm performs a scan(w) to discover outgo-
ing edges from w. However, different processes might invoke up-

date(w) concurrently, and different scans might see different sets
of outgoing edges. In such cases, it is necessary to prevent pro-
cesses from working with views on different branches of the DAG.
Specifically, we would like to ensure an intersection between views
accessed in reads and writes. Fortunately, property NV4 guarantees
that all scan(w) operations that return non-empty sets (i.e., return
some outgoing edges from w), have at least one element (edge) in
common. Note that a process cannot distinguish such an edge from
others and therefore traverses all returned edges. This property of
the algorithm enables us to define a totally ordered subset of the
views, which we call established, as follows:

Definition 2. [Sequence of Established Views] The unique sequence
of established views & is constructed as follows:

e the first view in £ is the initial view V' (0);

e if wis in &, then the next view after w in £ isw’ = w U ¢,
where c is an element chosen arbitrarily from the intersection
of all sets C' # () returned by some scan(w) operation in the
execution.

Note that each element in the intersection mentioned in Defi-
nition 2 is a set of changes, and that property NV4 guarantees a
non-empty intersection. In order to find such a set of changes c in
the intersection, one can take an arbitrary element from the set C
returned by the first collect(w) that returns a non-empty set in the
execution. This unique sequence £ allows us to define a total order
relation on established views. For two established views w and w’
we write w < w’ if w appears in & no later than w'; if in addition
w # w’ thenw < w’. Notice that for two established views w and
w,w < w'ifanonly if w C w'.

Notice that the first graph traversal in the system starts from
curView; = V(0), which is established by definition. When Tra-
verse is invoked with an established view curView;, every time a
vertex w is removed from Front and its children are added, one of
the children is an established view, by definition. Thus, Front al-
ways includes at least one established view, and since it ultimately
contains only one view, desiredView, we conclude that desiredView
assigned to curView; in line 64 and returned from Traverse is also
established. Thus, all views sent in NOTIFY messages or stored
in curView; are established. Note that while a process encounters
all established views in its traversal, it only recognizes a subset of
established views as such (whenever Front contains a single view,
that view must be in £).

It is easy to see that each traversal performs a ReadlnView on ev-
ery established view in £ between curView; and the returned view
desiredView. Notice that WriteInView (line 62) is always performed
in an established view. Thus, intuitively, by reading each view en-
countered in a traversal, we are guaranteed to intersect any write
completed on some established view in the traversed segment of £.
Then, performing the scan before ContactQ in ReadlnView and af-
ter the ContactQ in WriteInView guarantees that in this intersection,
indeed the state is transferred correctly, as explained in the begin-
ning of this section. A formal correctness proof of our protocol
appears in the full paper [2].

6. CONCLUSIONS

We defined a dynamic R/W storage problem, including an ex-
plicit liveness condition stated in terms of user interface and inde-
pendent of a particular solution. The definition captures a dynami-
cally changing resilience requirement, corresponding to reconfigu-
ration operations invoked by users. Our approach easily carries to
other problems, and allows for cleanly extending static problems to
the dynamic setting.



We presented DynaStore, which is the first algorithm we are
aware of to solve the atomic R/W storage problem in a dynamic
setting without consensus or stronger primitives. In fact, we as-
sumed a completely asynchronous model where fault-tolerant con-
sensus is impossible even if no reconfigurations occur. This im-
plies that atomic R/W storage is weaker than consensus, not only in
static settings as was previously known, but also in dynamic ones.
Our result thus refutes a common belief, manifested in the design
of all previous dynamic storage systems, which used agreement to
handle configuration changes. Our main goal in this paper was to
prove feasibility; future work may study the performance tradeoffs
between consensus-based solutions and consensus-free ones.
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