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Abstract For crash failures, [1, 2] considered systems with a vary-

ing number of eventually timely links. [1] shows that con-

We study consensus in a message-passing system whegensus is possible in a system where 2 f + 1 and there is
only some of the:? links exhibit some synchrony. This atleast one unknown non-faulty process whesel outgo-
problem was previously studied for systems with processing directed links are eventually timely (its incoming links
crashes; we now consider byzantine failures. We show thatcan be arbitrarily slow); thus, onl®(n) links in the system
consensus can be solved in a system where there is at leastre eventually timely, and all oth€x(n?) links can be arbi-
one non-faulty process whose links are eventually timely; trarily slow. Later, [2] has shown that consensus is possible
all other links can be arbitrarily slow. We also show that, in in an even weaker system, where> 2f + 1 and there is
terms of problem solvability, such a system is strictly weaker at least one unknown non-faulty process whgsmitgoing
than one where all links are eventually timely. direct links are eventually timely (and it is not known which
f links are those); thus, onl@(f) links in the system are
eventually timely. Forf = 1, this result implies that con-
sensus can be solved even if only one unknown directed link
in the system is eventually timely.

The above results are for systems with crash failures. In

The consensus problem is at the core of fault-tolerantthis paper, we consider byzantine failures, in which a failed
distributed systems. However, solving consensus is imposprocess may behave arbitrarily. Specifically, we consider a
sible in asynchronous systems subject to process failure%ystemsgyz where there exists some unknown non-faulty
[9]. A well-known way to overcome this impossibility is  process whose incoming and outgoing links are all eventu-
to make partial synchrony assumptions about the systemyjly timely. We show how to solve consensussif),, when
[6, 8]. In particular, from [8], it follows that consensus j, > 37+ 1, which is the maximum possible resiliency.

is possible in a system vvhere the relative speeds of pro-  gne may believe that systeﬁgyz (where only the links
cesses are bounded, aaltilinks areeventually timely, that ) -4 from a correct process are eventually timely) and

is, there exists a valua and a timel” such that messages  gygiemg, . (whereall the links are eventually timely) are

sent after ime” are delayed by at most by alink. This o4 jivalent in terms of problem solvabilityin fact, it may

possibility result holds for a systes\.,..s, With crash fail- seem that processes in syst can simulate system
4

ures and a systerfi,,. with byzantine failures, with are- g,y ysing message flooding: flooding ensures that ev-
siliency ofn > 2f +1andn > 3f +1, respectively, where o1y massage is relayed to its destination by the (unknown)
n is the number of processes afits the maximumthatcan o fauity process whose incoming and outgoing links are
fail. eventually timely, so flooding irS;,yz ensures eventually

To solve consensus, is it really necessary tihtinks timely communication betweeverypair of processes, like
be eventually timely? What if onlgomelinks are eventu- Shys-

ally timely, while other links can be arbitrarily slow; can
i ? 2
consensus still be solved? If so, how? Furthermore, do the™ 11 - ere true, the possibility of consensusgg,. shown in [8]

answers to these questions depend on the type of procesgould immediately imply the possibility of consensusdf, .. In other
failures (crash versus byzantine failures)? words, [8] would imply the possibility result that we show in this paper.

1 Introduction




However, this belief is incorrect. To show this, we ex- 2. Model
hibit a problem, namelyeventual timely broadcastvhich

can be solved itb,; butnotinS;, .. Thus,S}, . is strictly We consider a message-passing system, wherelh-set
weaker tharby,,. The rough intuition is that it is impos-  {1,...,n} of processes communicate with each other by
sible to distinguish in a timely fashion the relaying of a real sending point-to-point messages over a network.
message by an honest process from the relaying of a fake = Each process is an infinite state automaton that computes
message by a byzantine process. by taking steps. In each step, a process may perform the
following actions in order: (1) it may send a message to
able broadcasbr timely atomic broadcagiil] are also im- one of more processes, or it may issue an external o_utput,

S, (2) it may receive a message from some process, (3) it may
possible inSj .. . : : )

yz receive an external input, and (4) it may change its state.

To the best of our knowledge, the algorithm presented A process may fail by beingyzantinein which case it
here is the first to solve consensus with byzantine failuresmay behave arbitrarily, rather than according to its automa-
and few eventually timely links. Related work includes ton. In particular, the process may behave in a way that tries
[3] and [10], which propose a modular approach to solve to maxime the damage to the systemcdrectprocess is
consensus in a system with byzantine failures and an ora:One that is not byzantine. Valyédenotes an upper bound
cle that can indicate if a process chooses to deviate fromon the number of byzantine processes.
its protoco| by refusing to send a message. Such an oracle Links are unidirectional and there is a link connecting
not only encapsulates the synchrony of the system, but alscevery pair of processes. The link from procpgs process
the expected behavior of a process; it needs to distinguishg is denoteg — ¢. Every linkis reliable: it does not create,

a byzantine process that refuses to send a message when@uplicate, or lose messages.

should, from a correct process that does not send a message The system is partially synchronous, in that (1) there are
because its protocol does not prescribe to do so. An imple-unknown bounds on the minimum and maximum delays be-
mentation of this oracle is given for round-based algorithms tween two steps of a correct process, (2) some links in the
in systemS,,., where all links are eventually timely [7], ~System may be eventually timely. We also assume that pro-
but not in the modeF;, . that we consider, where only few Cesses can measure intervals of real time; this is only to
links are eventually timely. The implementation requires Simplify the presentation of our proofs; it is not required for
correct processes to start a round within bounded time ofour results. Alinkp — g is eventually timelyf there exists
each other, so that a process can use a timeout from thé constant and a timeTy (stabilization time) such that if
beginning of its round to accurately suspect processes thaf0me correct procegssendsm to some correct procegs
refuse to send messages in that round. It is not clear howat timet thenq receivesn by time max{t,To} + d. Intu-

to change this implementation to work m)yz_ First, by itively, messages sent aftép are received withiry time,

This impossibility immediately implies thaimely reli-

Theorem 24, it is not possible to simulafg,. with 5} .. While messages sent befdfgare received by timé, + 9.
Second, Theorem 24 also implies that for a round-based al- We do not require every link to be eventually timely;
gorithm in systemS, = with n > 3 andn — f > 2, it rather, we typically only assume that there exists some cor-

is impossible to ensure that correct processes start a rounéiect process whose incoming and outgoing links are even-
within bounded time of each other—violating a key need of tually timely. Such a processis called abisource
the implementation in [73.

3. Consistent unique broadcast

Our consensus algorithm usesnsistent unique broad-
2To further illustrate the difficulty in implementing the oracle of [7]  castas subroutine, which is a broadcast very similar to con-

o . . : S

inSy, .. consider a correct procepawhose incoming and outgoing links sistent broadcast [5] and authenticated broadcast [12]. Mes-

are all timely, but other links in the system are not. Then, in a round- h t d istent . b d t
based protocol, procegdinishes round 1 in a timely fashion aseceives sages have a tag, and consistent unique broadcast ensures

timely round 1 messages from all correct processes. Now suppose that dhat (1) correct processes deliver the same set of messages,
second correct procegsemains stuck in round 1 as its incoming links are  and (2) a correct process delivers at most one message with

slow. Suppose further that a]l other correct processes finish 'rqund 1 anda given tag. Intuitively, tags are used to ensure that a byzan-
start round 2. Then, it is possible that some third correct procéissshes . d b d diff .
round 2 by receiving: — f — 1 messages from correct process other than UN€ Process does not broadcast two different messages In

g and one message from a byzantine process, whigestill in round 2 the same round.
since it only receives — f — 1 messages. In fach may remain in round More precisely, consistent unique broadcastis defined by

2 for an unbounded amount of time whijeis stuck in round 1. In round P ;
3, 7 does not hear fronp and will eventually time out on and suspest two primitives, cubcastX, k, v) and cudelive(X, k, v, )

even thouglp is a correct process whose incoming and outgoing links are Where, intuitively, (X:k) is a tag, andv is a
all eventually timely. value. If a procesg invokes cubcastX, k,v) (resp.,




cudelivefX, k,v,q)), we say thatp cubcastéX,k,v)
(resp,p cudeliver$ X, k, v) from ¢). We assume that a cor-
rect processubcastat most once for any giveiX, k; in
particular, it does natubcastboth (X, k,v) and(X, k, v").
Consistent unique broadcast ensures the following:

¢ (Validity) If a correct procesg cubcastg X, k, v) then
all correct processes eventualtydeliver (X, k, v)
from p;

¢ (Unforgeability) If a correct procesp does notcub-
cast(X, k,v) then no correct process evaudelivers
(X, k,v) from p;

¢ (Uniqueness}or eachX, k andgq, a correct process
cudeliversat most one message of foid, k, ) from
processy;

¢ (Relay)If a correct processudelivers(X, k,v) from
a proces® then all correct processes eventuallyde-
liver (X, k,v) from p.

Consistent unique broadcast can be implemented as de-
scribed in [5, 12]. For convenience we include the imple-

mentation in Figure 1; correctness proofs are in [5, 12].

4. Provable reliable send

Our consensus algorithm also uses a new primitive called

provable reliable sendRoughly speaking, it can be used for
a procesy to send a message to ¢ such that a third party
gets a proof thatn is in transit.  The primitive guaran-
tees that ifp is correct then all correct processegets the
proof thatm is in transit, and if a correct procesgets the
proofthatm is in transit, and; is correct, themy receivesn.

¢ (Validity) If some correct procegspsendsn to some
correct procesg then eventually; preceivesn from

p,

e (Proof-Integrity)If some correct processgetsproof of
m from some processto some correct procegshen
q preceivesn from p;

¢ (Proof-Validity)If some correct procegspsendsn to
some procesg then every correct procesgetsproof
of m fromptog.

We also considereventually timely provable reliable
sendwhich ensures that if procegss a bisource then even-
tually a message: to q is received withinA’ of a correct
process getting proof afi. More precisely, we have the
following:

e (Eventual timelinesslf processq is a bisource then
there existg\’ and7” such that if some correct process
r getsproof ofm from some procesg to processg; at
timet thenq preceivesn from p by timemax{t, 7'} +
Al

Intuitively, if » getsproof ofn after timeT” thenq preceives
m within A’ time, while if r getsproof ofm before timeT”
thenqg preceivesn by timeT” + A'.

4.2. Implementation

Figure 2 shows an implementation of provable reliable
send. To psend a messageto dst a processrc sends
(PSEND,m, src,dst) to all processes. When a procgss
receives(PSEND, m, Src, dst) from s, it checks ifs is the
origin of the messages(= src) andp # s. If both con-
ditions are truep sends(PSEND m, src, dst) to all. The

There are also eventual timeliness properties that guarantegeason for checking that # s is to avoid havings send

that if the receiver is a bisource then the message cannot béhis message to all multiple times. Therthecks thay is

received too much later than the proof. the ultimate destination af: (dst = p) and thatg has re-
We now give a precise definition and implement provable ceived(PSEND m, Src, dst) from at leastf + 1 processes—

reliable send.
4.1. Specification

Provable reliable send is defined by primitives
psendm, q), preceivép,m), and getproofp,m,q). If
a procesy invokespsendm, ¢) we say thatp psendsn
to q. If a process; invokespreceivép, m) we say thay
preceivesn fromp. If a process invokesgetproofm, p, q)
we say that getsproof ofn fromp to q. Provable reliable
send ensures the following:

¢ (Integrity) A correct procesg preceivesn from a cor-
rect proces® at most once, and only j§ has previ-
ously psenin to g;

and hence from at least one correct process. lfpsore-
ceivesm from src, if it has not done so already. Then,
p checks if it received PSEND m, Src, dst) from at least
2f 4+ 1 processes—and hence from at legst 1 correct
processes. If sq getsproof ofin from src.

We have the following theorems:

Theorem 1 Consider a system with byzantine failures and
n > 3f+1. The algorithm in Figure 2 implements provable
reliable send.

Theorem 2 Consider a system with byzantine failures such
thatn > 3f + 1 and there exists at least one correct
process whose outgoing and incoming links are eventually
timely. The algorithm in Figure 2 implements eventually
timely provable reliable send.



Code for each procegs

1 tocubcastX, k,v) :
2 send(INIT, X, k, v, p) to all processes

3 uponreceive(INIT, X, k, v, q) from g do
4+ if no(ECHO, X k, , q) sent before by then send(ECcHO, X, k, v, q) to all

s uponreceive(ECHO, X, k, v, q) from (n + f)/2 different processedo
e if No(ECHO, X, k, *, q) sent before by then send(ECHO, X, k, v, ¢) to all
7 if no(READY, X, k, *, q) sent before by then send(READY, X, k, v, ¢) to all

s uponreceive(READY, X, k, v, q) from f + 1 different processedo
s if no(ECHO, X, k, *, q) sent before by then send(ECHO, X, k, v, q) to all
10 if no(READY, X, k, %, q) sent before by then send(READY, X, k, v, ¢) to all

1 upon receive(READY, X, k, v, q) fromn — f different processedo
12 if (X, k,v) not alreadycudeliveredrom ¢ then cudelivef X, k, v, q)

Figure 1. Implementation of consistent unique broadcast in a system with n>3f+1][5,12].

Code for each procegs

1 To psendm to q:
2 send(PSEND m, p, q) to all processes

3 upon receive(PSEND m, src, dst) from s do
4+ if src= sandp # s then send(PSENDQ m, s, dst) to all processes  (* relay to all *)
s  if dst= p and receivedPSEND m, src, dsf) from f + 1 processes
and not already preceiygrc, m)
s  thenpreceivésrc, m)
7 if received(PSEND m, src, dst) from 2 f + 1 processes
s thengetproof(m, src,dst)  (* know that f + 1 processes relay st *)

Figure 2. Implementation of provable reliable send in a system with n>3f+1.



We now prove the above theorems.
3f+1.

Assume that

Lemma 3 (Integrity) A correct procesg preceivesn from
a correct procesg at most once, and only i has previ-
ously psentn to q.

Proof. The fact thaly preceives at most once is because
q always checks if it previously preceived before preceiv-
ing. Now suppose that preceivesn from p. Thengq re-
ceives(PSEND m, p, q) from f + 1 processes. Thug,re-
ceives(PSEND m, p, q) from at least one correct process
s. As links are reliable ang and s are corrects sends
(PSEND M, p,q) t0 q. Thus, eithers = p or s receives
(PSEND,m, p, ) from p. In the first casep psentm tog. In

the second case, as links are reliable anddp are correct,

p sendgPSEND, m, p, q) t0 s, and sop psentm to . a

Lemma 4 If some correct procegspsendsn to some pro-
cessg then every correct process ser@SEND m, p, ) to
all processes.

Proof. Suppose that some correct procggsendsn to
some procesg. Then,p sends(PSEND, m, p, q) to all cor-
rect processes. When a correct proeggsp receives such
a message, it also senflsSENQ m, p, ¢) to all processes.
Therefore all correct processes sérdEND, m, p, q) to all
processes. |

Lemma 5 (Validity) If some correct procegspsendsn to
some correct procesgthen eventually preceivesn from

p-

Proof. Suppose that some correct procggssendsn to
some correct procegs By Lemma 4, every correct process
sends(PSEND m, p, q) t0 gq. Since there are at lea3f +
1 correct processesg,eventually receiveSPSEND m, p, q)
from f + 1 processes anglpreceivesn from p. a

Lemma 6 (Proof-Integrity) If some correct processget-
sproof ofm from some procegsto some correct process
theng preceivesn from p.

Proof. Suppose that some correct proceggetsproof of

m from some procesg to some correct procegs Thenr
receive§ PSEND,m, p, ¢) from 2f + 1 processes. As links
are reliable and at mogtprocesses are byzantine, we have
that at leastf + 1 correct processes SefHSEND m, p, q)

to r. When sending such a message, each correct process

sends to all processes. Therefore, at lgfast 1 correct
processes sen@sSEND m, p, q) to ¢, and sag preceivesn
from p. a

Lemma 7 (Proof-Validity) If some correct proceggpsends
m to some procesgthen every correct procegsgetsproof
of m fromptogq.

Proof. Suppose that some correct procgsgsendsm
to some procesg, and letr be some correct process. By
Lemma 4, every correct process sefiliSEND m, p, ) t0
r. As links are reliable and at lea3ff + 1 processes are
correct, we have that receives(PSEND m, p, q) from at
least2f + 1 processes. Thereforegetsproof ofm from p
togq. O

Lemma 8 (Eventual timeliness) If procegsis a bisource
then there existd’ andT"” such that if some correct process
r getsproof ofn from some procegsto processy at timet
theng preceivesn fromp by timemax{t, 7'} + A’.

Proof. (Similar to proof of Proof-Integrity) Suppose that
q is a bisource. Then all incoming and outgoing links of
q are eventually timely, and so there existand T, such
that if some correct procegssendsn to ¢ at a timet then
q receivesm by timemax{¢, Ty} + 6. Assume that some
correct process getsproof ofm from some procesg to
procesg; at some time. Thenr receive§PSEND m, p, q)
from2f +1 processes. Asis correct and links are reliable,
atleastf + 1 correct processes SgMSEND m, p, q) tor by
time¢. When a correct process sel@SEND, m, p, q) tor,
it also sends this message to all processes and in particular
to ¢, and this happens by time Sinceq is a bisource, by
time max{t,To} + 4, ¢ receive§ PSEND m, p, q) from ev-
ery correct process, and hence frgm 1 processes. When
this happensg preceivesm from p if it has not done so
already. O
Proof of Theorem 1. Integrity follows from Lemma 3.
Validity follows from Lemma 5. Proof-Integrity follows
from Lemma 6. Proof-Validity follows from Lemma 7.0
Proof of Theorem 2. Integrity,Validity, Proof-Integrity
and Proof-Validity follow from Theorem 1. Eventual time-
liness follows from Lemma 8. |

5. Consensus

We consider the binary consensus problem, where ev-
ery correct process proposes some valufirl } and must
make an irrevocabldecisionon a value such that

e (AgreementNo two correct processes decide differ-
ently;

¢ (Validity) If some correct process decidesthenv is
proposed by some correct process;

e (Termination) Every correct process eventually de-
cides some value.

Figure 3 shows an implementation of binary consensus
for a system byzantine failures witlhh > 3f + 1 and at
least one bisource. The algorithm was originally inspired



by Ben-Or’s randomized algorithm [4], with many modifi- to the received value. On the other handp times out on
cations; it uses as subroutines consistent unique broadcaghe coordinatorp increases the timeout for the future, in
and eventually timely provable reliable send. case it was a premature timeout.

Description. Each procesp keeps a current estimate The coordinator waits to receive — f estimates from
of the decision value, which is initially the value that  processes, picks the value that occurs most, and sends back
proposes to consensus. The algorithm proceeds by roundshis value to processes.
where each round has four phases: certification, reporting, Intuition. The algorithm uses various mechanisms to
proposing, and consulting the coordinator. In the certifi- solve consensus:

cation phasep uses consistent unique broadcast to send its . _ ) )
e Like Ben-Or’s algorithm, the reporting and proposing

estimate to all processes. Procgsensiders a valueto be
certifiedif p delivers at leasf + 1 certification messages for

v. This guarantees that at least one such a message comes

from a correct process. Procgswaits to deliver certifica-
tion messages from — f processes, and therchanges its
estimate to the value that was delivered most.

In the reporting phasey broadcasts its estimate (we
sayp reportsv). Thenp waits to delivern — f messages

for values that are certified. As time passes, this phase can

complete not becauge receives further report messages,

but because receives certification messages that causes a

value to become certified. Thenpicks the valuew that
appears in most messages.

In the proposing phase, checks if all report messages
for a certified value is fotw and, if so,p broadcasts (we
say p proposesw); elsep proposes’. Thenp waits for
delivery ofn — f proposal messages for eitheror ? if
1 — w is certified.

In the consulting phase first determines whether to

change its estimate and whether to accept the coordinator’s
value, according to four cases based on how many proposals

p delivers for a value: # 7:

e Case 1l:pdeliversn— f proposals forz: Inthis casep
decidesr and does not accept the coordinator’s value.

e Case 2:p deliversn — 2f proposals forz: In this
case,p changes its estimate toand does not accept
the coordinator’s value.

e Case 3:p deliversn — 3f proposals forz: In this
casep changes its estimate t and later accepts the
coordinator’s value ifp does not time out on the coor-
dinator.

e Case 4:p delivers less tham — 3f proposals forz:
In this casep accepts the coordinator’s valuepifdoes
not time out on the coordinator.

Thenp sends its current estimate to the coordinator using
provable reliable send. The coordinator rotates with each

round: for roundk, the coordinator is procegsmod n.
Whenp knows that at least — f processes have sent their
estimates to the coordinator,starts a timer. If receives
the coordinator’s value within a timeout period, angrevi-
ously decided to accept its value, thechanges its estimate

phases ensure that at most one non-? can be sentin the
propose phase by correct processes. This ensures that,
in each round, processes attempt to decide on only one
value, which is important for agreement.

Unlike Ben-Or’s algorithm, we use an extra certifica-
tion phase to ensure that if all processes start with the
same valuez, then reports fod — z (from byzantine
processes) are ignored.

We use consistent unique broadcast to ensure that
byzantine processes cannot propose two different val-
ues in the same phase.

e We replace the random coin tosses of Ben-Or’s algo-

rithm with a coordinator in the consulting phase.

In the consulting phase, processes can fall in one of the
four cases described before, according to how many
times they see a non-? value in the proposing phase.
Ben-Or’s algorithm only has three cases. With only
three cases, our algorithm would not work.

Finally, because coordinators can be byzantine, we
have the following problem: (a) a byzantine coordi-
nator may pretend that it never receives messages, and
processes waiting for the coordinator must eventually
time out, (b) however, a correct procgssannot start

the timeout timer as soon asasks help to the coordi-
nator, because the coordinator may be correct but other
processes may be lagging behind in previous rounds,
so that the coordinator will not get enough estimates to
respond; sop must wait untilp knows that the other
correct processes have also sent their estimate to the
coordinator. To do that, processes could try to broad-
cast their estimates to the coordinator; tiperan start

its timer whenp deliversn. — f such broadcasts. But
this idea requires the broadcast to be timely: the co-
ordinator also needs to receive the- f messages in

a bounded amount of time. As we show, such timely
reliable broadcast cannot be implemented in a system
with only one bisource. We solve this problem with
eventually timely provable reliable send, which allows
processes to know when— f messages are on their
way to the coordinator in a timely fashion when the
coordinator is a bisource.



Code for process:

Initialization:
Timeout« 1

function certified k)
1 return {w : cudelivered(CERTIFY, k, w) from at leastf + 1 processe$

To proposév):
2 k<« 0
s while truedo
4 k+—k+1
(* phase 0: certification *)

5 cubcasfCERTIFY, k, v)

6 wait until cudeliver(CERTIFY, k, %) fromn — f processes
(* phase 1: reporting estimates *)

7 v < valuecudeliveredmost in(CERTIFY, k, x) messages

8 cubcastREPORT k, v)

9 wait until cudeliver(REPORT k, ) from n — f processes with € certified k)
(* phase 2: proposing the most common estimate *)

10 w < valuecudeliveredmost in(REPORT k, x) messages

1 if all (REPORT k, ) with % € certified k) are forw

12 then cubcastPROPOSEK, w)

13 elsecubcas(PROPOSEE, ?7)

14 wait until cudeliver(PROPOSEE, ) fromn — f processes with = w

or (* =7 andl — w € certified k))

(* phase 3: consulting coordinator *)

15 acceptcoord.new.estimate« true

16 if cudelivered(PROPOSEE, x) with z # 7 fromn — f processethen

17 decidex

18 VT

19 acceptcoord new estimate« false

20 else ifcudelivered PROPOSEE, x) with  # 7 fromn — 2 f processethen
21 VT

22 acceptcoord new estimate« false

23 else ifcudelivered PROPOSEE, x) with z # 7 from n — 3f processethen
24 VT

25 psend(HELP-REQ k, v) t0o k mod n

26 wait until getproofof (HELP-REQ k, *) fromn — f processes té mod n
27 start.time « clock()

28 wait until received(HELP-RESR k, y) from k mod n or clock() — starttime > Timeout
29 if received(HELP-RESR k, y) from & mod n then

30 if acceptcoord newestimatehenv < y

a1 elseTimeout+ Timeout+ 1

(* coordinator’s help *)
upon preceive(HELP-REQ k, *) fromn — f processeso
2z < value that occurs most fHELP-REQ k, *) messages
s send(HELP-RESRE, z) to all

w

Figure 3. Implementation of binary consensus in a system with n > 3f + 1 and at least one bisource.



We now state some key properties for the correctness ofCorollary 22 (Validity) If some correct process decides
the algorithm. Detailed proofs are omitted because of spacehenw is proposed by some correct process.
limitations; they will be included in the full version of the
paper. Theorem 23 Consider a system with byzantine failures
such thatn > 3f + 1 and there exists at least one correct
Lemma 9 If all correct processes start rounkd with the  process whose outgoing and incoming links are eventually

same value then they all decide in roundk. timely. The algorithm in Figure 3 solves consensus.

Lemma 10 In round k, if two correct processes propose Proof. Agreement follows from Lemma 21. Valid-

vy # 7 andwvy # 7, respectively, then; = v,. ity follows from Corollary 22. Termination follows from
Lemma 17. O

Corollary 11 For each roundk, there exists a non-? value
v, such that if a correct process delivefBROPOSEE, v)

from a correct process then= vy of v = 7, 6. Weakness of having one bisource

Lemma 12 The valuew that a correct procesp chooses With byzantine failures, we now show that asystﬁmz

in line 10 is in certifiedk) whenp executes line 10. with at least one bisource is strictly weaker than a system
Sy Where all links are eventually timely, in terms of prob-

Lemma 13 If a correct procesg proposes? in round & lem solvability. To do so, we show that a type of broad-

then at the time of the broadcagt), 1} C certifiedk) atp.  cast, calledeventual timely broadcastan be implemented

in Sy, but it cannot be implemented &Y, . This impos-
sibility result also implies that timely reliable broadcast [11]
and timely atomic broadcast [11] cannot be implemented in
Shye-
In contrast, with crash failuresyentual timely broadcast
can be implemented in both a systém.,.s, where all links
As previously observed, a correct procgssan be in  are eventually imelynda systemS;,,,, with at least one
four cases regarding how it executes the consulting phasebisource.
(Case 1)p deliversn — f proposals for a non-? value and ~ Eventual timely broadcasis defined by two prim-
executes lines 17-19, (Case2}leliversn — 2f propos-  itives, broadcastm) and deliverim,p). If p invokes
als for a non-? value and executes lines 21-22, (Cage 3) broadcastm), we say thap broadcastsm. If ¢ invokes
deliversn — 3/ proposals for a non-? value and executes deliver(m, p), we say thay deliversm from p. Eventual
line 24 or (Case 4) delivers less tham — 3f proposals  timely broadcast ensures the following:
for a non-? value. We now show that in any given round,

Lemma 14 If z € certifiedk) at some correct procegs
then eventually € certified k) at every correct process.

Lemma 15 In every roundk, correct processes do not get
stuck in phases 0, 1, 2 or 3.

correct processes always fall into two consecutive cases. ~ ® (Eventual timely validityJhere exists a tim& and a

value~ such that, if a correct procepsdroadcastsn
Lemma 16 In any roundk, all correct processes fall in attimet > T, then every correct process delivers
Cases 1 or 2, or they all fall in Cases 2 or 3, or they all from p before timet + ~;

fall in Cases 3 or 4. N
¢ (Unforgeability)If a correct procesg does not broad-

Lemma 17 (Termination) Every correct process eventu- castm then no corrrect process deliversfrom p.
ally decides some value.

Lemma 18 If in round k correct processeg andp’ decide Theorem 24 Consider a system with byzantine failures

x andz’, respectively, them = 2. wheren > 3,n — f > 2, and some correct process has in-
coming and outgoing links that are eventually timely. There

Lemma 19 If a correct procesg decides: in roundk then  is no implementation of eventual timely broadcast.

all correct processes start rourid+ 1 with their estimates

set toz. Proof. By way of contradiction, assume there is such

an implementation. Construct a rui as follows. Pick
Corollary 20 If a correct proces®p decidese in round k some process to be a bisource, by choosing somsuch
then all correct processes deciden roundk + 1. asd = 2n and making every message sentdgt some

time ¢ be received by time + §. Pick some procegs # s
Lemma 21 (Agreement) No two correct processes decide to be correct, and let use the implementation of eventual
differently. timely broadcast to broadcast distinct messages infinitely



often. Let every message sent frgmo a process differ-
ent froms at some time be received after timet. Since
the implementation of eventual timely broadcast is correct,
there exists some timig and a valuey such that every mes-
sage broadcast hyafter timet, is delivered withiny time
units. Letqg be a correct process different frognand p.
Sincep broadcasts infinitely often, therbroadcasts a mes-
sagem at some time&; > max{ty,v}. Such a message is
delivered byg at some time-, < t; + . Moreover, every
message sent lyto any process different frombetween
timest,; andts is received after time,: this is because such
messages are received after tiddgeand2t; > t; +v > to.
Now consider a ru?’ that is identical toR up to time
t1, but () at timet;, p does not broadcast, (2) s in R’
is a byzantine process (3) all processes expepave the
same behavior as in ruR up to timet,, (4) after timet,,
messages to and froprare delayed by at most time units,
so thatp is a bisource. For procegs runsR and R’ are
indistinguishable until time,. Thus,q deliversm from p
at timet,, contradicting the Unforgeability property. O
Since both timely reliable broadcast [11] and timely
atomic broadcast [11] can be used to implement eventual
timely broadcast, we have the following:

Corollary 25 Consider a system with byzantine failures
wheren > 3, n — f > 2, and some correct process
has incoming and outgoing links that are eventually timely.
There is no implementation of timely reliable broadcast or
of timely atomic broadcast.

If all links are eventually timely, then it is trivial to im-
plement eventual timely broadcast: to broadeasprocess
p sendgETB, m, p) to all, and every; delivers(m) wheng
receive§ ETB, m, p) from p. We thus have the following:

Theorem 26 In a system with byzantine failures where all
links are eventually timely, there is an implementation of
eventual timely broadcast.

7 Conclusion

Algorithms that work with general failures and weak as-
sumptions have better coverage than algorithms that work
with restricted failures and strong assumptions. In this
paper, we studied the implementability of consensus with
byzantine failures and with weak assumptions on syn-

chrony. We have shown that consensus is possible in system

Shyz» IN Which there exists some unknown non-faulty pro-
cess whose incoming and outgoing links are all eventually
timely. We have also shown thaf,  is less powerful than
systemSy,., in which all the links are eventually timely.
Some open problems regarding consensus remain in sys
tems with byzantine failures: can consensus be solved if

there exists at least one non-faulty processhosen — 1

outgoinglinks are all eventually timely? How aboutdfhas

only f outgoing links that are eventually timely? (Recall
that with crash failures this condition is sufficient to solve
consensus.) We conjecture that the answer is negative in
both cases.
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