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Abstract

We study consensus in a message-passing system where
only some of then2 links exhibit some synchrony. This
problem was previously studied for systems with process
crashes; we now consider byzantine failures. We show that
consensus can be solved in a system where there is at least
one non-faulty process whose links are eventually timely;
all other links can be arbitrarily slow. We also show that, in
terms of problem solvability, such a system is strictly weaker
than one where all links are eventually timely.

1 Introduction

The consensus problem is at the core of fault-tolerant
distributed systems. However, solving consensus is impos-
sible in asynchronous systems subject to process failures
[9]. A well-known way to overcome this impossibility is
to make partial synchrony assumptions about the system
[6, 8]. In particular, from [8], it follows that consensus
is possible in a system where the relative speeds of pro-
cesses are bounded, andall links areeventually timely, that
is, there exists a value� and a timeT such that messages
sent after timeT are delayed by at most� by a link. This
possibility result holds for a systemScrash with crash fail-
ures and a systemSbyz with byzantine failures, with a re-
siliency ofn � 2f +1 andn � 3f +1, respectively, where
n is the number of processes andf is the maximum that can
fail.

To solve consensus, is it really necessary thatall links
be eventually timely? What if onlysomelinks are eventu-
ally timely, while other links can be arbitrarily slow; can
consensus still be solved? If so, how? Furthermore, do the
answers to these questions depend on the type of process
failures (crash versus byzantine failures)?

For crash failures, [1, 2] considered systems with a vary-
ing number of eventually timely links. [1] shows that con-
sensus is possible in a system wheren � 2f+1 and there is
at least one unknown non-faulty process whosen�1 outgo-
ing directed links are eventually timely (its incoming links
can be arbitrarily slow); thus, only�(n) links in the system
are eventually timely, and all other�(n2) links can be arbi-
trarily slow. Later, [2] has shown that consensus is possible
in an even weaker system, wheren � 2f + 1 and there is
at least one unknown non-faulty process whosef outgoing
direct links are eventually timely (and it is not known which
f links are those); thus, only�(f) links in the system are
eventually timely. Forf = 1, this result implies that con-
sensus can be solved even if only one unknown directed link
in the system is eventually timely.

The above results are for systems with crash failures. In
this paper, we consider byzantine failures, in which a failed
process may behave arbitrarily. Specifically, we consider a
systemS0

byz where there exists some unknown non-faulty
process whose incoming and outgoing links are all eventu-
ally timely. We show how to solve consensus inS0

byz when
n � 3f + 1, which is the maximum possible resiliency.

One may believe that systemS0

byz (where only the links
to and from a correct process are eventually timely) and
systemSbyz (whereall the links are eventually timely) are
equivalent in terms of problem solvability.1 In fact, it may
seem that processes in systemS0

byz can simulate system
Sbyz by using message flooding: flooding ensures that ev-
ery message is relayed to its destination by the (unknown)
non-faulty process whose incoming and outgoing links are
eventually timely, so flooding inS0

byz ensures eventually
timely communication betweeneverypair of processes, like
in Sbyz .

1If that were true, the possibility of consensus inSbyz shown in [8]
would immediately imply the possibility of consensus inS0

byz
. In other

words, [8] would imply the possibility result that we show in this paper.



However, this belief is incorrect. To show this, we ex-
hibit a problem, namely,eventual timely broadcast, which
can be solved inSbyz but not inS0

byz . Thus,S0

byz is strictly
weaker thanSbyz . The rough intuition is that it is impos-
sible to distinguish in a timely fashion the relaying of a real
message by an honest process from the relaying of a fake
message by a byzantine process.

This impossibility immediately implies thattimely reli-
able broadcastor timely atomic broadcast[11] are also im-
possible inS0

byz .

To the best of our knowledge, the algorithm presented
here is the first to solve consensus with byzantine failures
and few eventually timely links. Related work includes
[3] and [10], which propose a modular approach to solve
consensus in a system with byzantine failures and an ora-
cle that can indicate if a process chooses to deviate from
its protocol by refusing to send a message. Such an oracle
not only encapsulates the synchrony of the system, but also
the expected behavior of a process; it needs to distinguish
a byzantine process that refuses to send a message when it
should, from a correct process that does not send a message
because its protocol does not prescribe to do so. An imple-
mentation of this oracle is given for round-based algorithms
in systemSbyz , where all links are eventually timely [7],
but not in the modelS0

byz that we consider, where only few
links are eventually timely. The implementation requires
correct processes to start a round within bounded time of
each other, so that a process can use a timeout from the
beginning of its round to accurately suspect processes that
refuse to send messages in that round. It is not clear how
to change this implementation to work inS0

byz . First, by
Theorem 24, it is not possible to simulateSbyz with S0

byz .
Second, Theorem 24 also implies that for a round-based al-
gorithm in systemS0

byz with n � 3 andn � f � 2, it
is impossible to ensure that correct processes start a round
within bounded time of each other—violating a key need of
the implementation in [7].2

2To further illustrate the difficulty in implementing the oracle of [7]
in S0

byz
, consider a correct processp whose incoming and outgoing links

are all timely, but other links in the system are not. Then, in a round-
based protocol, processp finishes round 1 in a timely fashion asp receives
timely round 1 messages from all correct processes. Now suppose that a
second correct processq remains stuck in round 1 as its incoming links are
slow. Suppose further that all other correct processes finish round 1 and
start round 2. Then, it is possible that some third correct processr finishes
round 2 by receivingn� f � 1 messages from correct process other than
q and one message from a byzantine process, whilep is still in round 2
since it only receivesn� f � 1 messages. In fact,p may remain in round
2 for an unbounded amount of time whileq is stuck in round 1. In round
3, r does not hear fromp and will eventually time out on and suspectp,
even thoughp is a correct process whose incoming and outgoing links are
all eventually timely.

2. Model

We consider a message-passing system, where a set� =
f1; : : : ; ng of processes communicate with each other by
sending point-to-point messages over a network.

Each process is an infinite state automaton that computes
by taking steps. In each step, a process may perform the
following actions in order: (1) it may send a message to
one of more processes, or it may issue an external output,
(2) it may receive a message from some process, (3) it may
receive an external input, and (4) it may change its state.

A process may fail by beingbyzantine, in which case it
may behave arbitrarily, rather than according to its automa-
ton. In particular, the process may behave in a way that tries
to maxime the damage to the system. Acorrectprocess is
one that is not byzantine. Valuef denotes an upper bound
on the number of byzantine processes.

Links are unidirectional and there is a link connecting
every pair of processes. The link from processp to process
q is denotedp! q. Every link is reliable: it does not create,
duplicate, or lose messages.

The system is partially synchronous, in that (1) there are
unknown bounds on the minimum and maximum delays be-
tween two steps of a correct process, (2) some links in the
system may be eventually timely. We also assume that pro-
cesses can measure intervals of real time; this is only to
simplify the presentation of our proofs; it is not required for
our results. A linkp! q is eventually timelyif there exists
a constantÆ and a timeT0 (stabilization time) such that if
some correct processp sendsm to some correct processq
at timet thenq receivesm by timemaxft; T0g + Æ. Intu-
itively, messages sent afterT0 are received withinÆ time,
while messages sent beforeT0 are received by timeT0 + Æ.

We do not require every link to be eventually timely;
rather, we typically only assume that there exists some cor-
rect processs whose incoming and outgoing links are even-
tually timely. Such a processs is called abisource.

3. Consistent unique broadcast

Our consensus algorithm usesconsistent unique broad-
castas subroutine, which is a broadcast very similar to con-
sistent broadcast [5] and authenticated broadcast [12]. Mes-
sages have a tag, and consistent unique broadcast ensures
that (1) correct processes deliver the same set of messages,
and (2) a correct process delivers at most one message with
a given tag. Intuitively, tags are used to ensure that a byzan-
tine process does not broadcast two different messages in
the same round.

More precisely, consistent unique broadcast is defined by
two primitives, cubcast(X; k; v) and cudeliver(X; k; v; q)
where, intuitively, (X; k) is a tag, and v is a
value. If a processp invokes cubcast(X; k; v) (resp.,



cudeliver(X; k; v; q)), we say thatp cubcasts(X; k; v)
(resp,p cudelivers(X; k; v) from q). We assume that a cor-
rect processcubcastat most once for any givenX; k; in
particular, it does notcubcastboth(X; k; v) and(X; k; v0).
Consistent unique broadcast ensures the following:

� (Validity) If a correct processp cubcasts(X; k; v) then
all correct processes eventuallycudeliver (X; k; v)
from p;

� (Unforgeability) If a correct processp does notcub-
cast(X; k; v) then no correct process evercudelivers
(X; k; v) from p;

� (Uniqueness)For eachX; k andq, a correct process
cudeliversat most one message of form(X; k; �) from
processq;

� (Relay)If a correct processcudelivers(X; k; v) from
a processp then all correct processes eventuallycude-
liver (X; k; v) from p.

Consistent unique broadcast can be implemented as de-
scribed in [5, 12]. For convenience we include the imple-
mentation in Figure 1; correctness proofs are in [5, 12].

4. Provable reliable send

Our consensus algorithm also uses a new primitive called
provable reliable send. Roughly speaking, it can be used for
a processp to send a messagem to q such that a third party
gets a proof thatm is in transit. The primitive guaran-
tees that ifp is correct then all correct processesr gets the
proof thatm is in transit, and if a correct processr gets the
proof thatm is in transit, andq is correct, thenq receivesm.
There are also eventual timeliness properties that guarantee
that if the receiver is a bisource then the message cannot be
received too much later than the proof.

We now give a precise definition and implement provable
reliable send.

4.1. Speci�cation

Provable reliable send is defined by primitives
psend(m; q), preceive(p;m), and getproof(p;m; q). If
a processp invokespsend(m; q) we say thatp psendsm
to q. If a processq invokespreceive(p;m) we say thatq
preceivesm fromp. If a processr invokesgetproof(m; p; q)
we say thatr getsproof ofm from p to q. Provable reliable
send ensures the following:

� (Integrity)A correct processq preceivesm from a cor-
rect processp at most once, and only ifp has previ-
ously psentm to q;

� (Validity) If some correct processp psendsm to some
correct processq then eventuallyq preceivesm from
p;

� (Proof-Integrity)If some correct processr getsproof of
m from some processp to some correct processq then
q preceivesm from p;

� (Proof-Validity)If some correct processp psendsm to
some processq then every correct processr getsproof
of m from p to q.

We also considereventually timely provable reliable
send, which ensures that if processq is a bisource then even-
tually a messagem to q is received within�0 of a correct
process getting proof ofm. More precisely, we have the
following:

� (Eventual timeliness)If processq is a bisource then
there exists�0 andT 0 such that if some correct process
r getsproof ofm from some processp to processq at
timet thenq preceivesm fromp by timemaxft; T 0g+
�0.

Intuitively, if r getsproof ofm after timeT 0 thenq preceives
m within �0 time, while if r getsproof ofm before timeT 0

thenq preceivesm by timeT 0 +�0.

4.2. Implementation

Figure 2 shows an implementation of provable reliable
send. To psend a messagem to dst, a processsrc sends
(PSEND;m; src; dst) to all processes. When a processp
receives(PSEND;m; src; dst) from s, it checks ifs is the
origin of the message (s = src) andp 6= s. If both con-
ditions are true,p sends(PSEND;m; src; dst) to all. The
reason for checking thatp 6= s is to avoid havings send
this message to all multiple times. Thenp checks thatq is
the ultimate destination ofm (dst = p) and thatq has re-
ceived(PSEND;m; src; dst) from at leastf +1 processes—
and hence from at least one correct process. If so,p pre-
ceivesm from src, if it has not done so already. Then,
p checks if it received(PSEND;m; src; dst) from at least
2f + 1 processes—and hence from at leastf + 1 correct
processes. If so,p getsproof ofm from src.

We have the following theorems:

Theorem 1 Consider a system with byzantine failures and
n � 3f+1. The algorithm in Figure 2 implements provable
reliable send.

Theorem 2 Consider a system with byzantine failures such
that n � 3f + 1 and there exists at least one correct
process whose outgoing and incoming links are eventually
timely. The algorithm in Figure 2 implements eventually
timely provable reliable send.



Code for each processp:

1 to cubcast(X; k; v) :
2 send(INIT ; X; k; v; p) to all processes

3 upon receive(INIT ; X; k; v; q) from q do
4 if no (ECHO; X; k; �; q) sent before byp then send(ECHO; X; k; v; q) to all

5 upon receive(ECHO; X; k; v; q) from (n+ f)=2 different processesdo
6 if no (ECHO; X; k; �; q) sent before byp then send(ECHO; X; k; v; q) to all
7 if no (READY; X; k; �; q) sent before byp then send(READY; X; k; v; q) to all

8 upon receive(READY; X; k; v; q) from f + 1 different processesdo
9 if no (ECHO; X; k; �; q) sent before byp then send(ECHO; X; k; v; q) to all
10 if no (READY; X; k; �; q) sent before byp then send(READY; X; k; v; q) to all

11 upon receive(READY; X; k; v; q) fromn� f different processesdo
12 if (X; k; v) not alreadycudeliveredfrom q then cudeliver(X; k; v; q)

Figure 1. Implementation of consistent unique broadcast in a system with n � 3f + 1 [5, 12].

Code for each processp:

1 To psendm to q:
2 send(PSEND;m; p; q) to all processes

3 upon receive(PSEND;m; src; dst) from s do
4 if src= s andp 6= s then send(PSEND;m; s; dst) to all processes (* relay to all *)
5 if dst= p and received(PSEND;m; src; dst) from f + 1 processes

and not already preceive(src;m)
6 then preceive(src;m)
7 if received(PSEND;m; src; dst) from 2f + 1 processes
8 then getproof(m; src; dst) (* know thatf + 1 processes relay todst *)

Figure 2. Implementation of provable reliable send in a system with n � 3f + 1.



We now prove the above theorems. Assume thatn �
3f + 1.

Lemma 3 (Integrity) A correct processq preceivesm from
a correct processp at most once, and only ifp has previ-
ously psentm to q.

Proof. The fact thatq preceives at most once is because
q always checks if it previously preceived before preceiv-
ing. Now suppose thatq preceivesm from p. Thenq re-
ceives(PSEND;m; p; q) from f + 1 processes. Thus,q re-
ceives(PSEND;m; p; q) from at least one correct process
s. As links are reliable andq and s are correct,s sends
(PSEND;m; p; q) to q. Thus, eithers = p or s receives
(PSEND;m; p; q) from p. In the first case,p psentm to q. In
the second case, as links are reliable ands andp are correct,
p sends(PSEND;m; p; q) to s, and sop psentm to q. 2

Lemma 4 If some correct processp psendsm to some pro-
cessq then every correct process sends(PSEND;m; p; q) to
all processes.

Proof. Suppose that some correct processp psendsm to
some processq. Then,p sends(PSEND;m; p; q) to all cor-
rect processes. When a correct processq 6= p receives such
a message, it also sends(PSEND;m; p; q) to all processes.
Therefore all correct processes send(PSEND;m; p; q) to all
processes. 2

Lemma 5 (Validity) If some correct processp psendsm to
some correct processq then eventuallyq preceivesm from
p.

Proof. Suppose that some correct processp psendsm to
some correct processq. By Lemma 4, every correct process
sends(PSEND;m; p; q) to q. Since there are at least2f +
1 correct processes,q eventually receives(PSEND;m; p; q)
from f + 1 processes andq preceivesm from p. 2

Lemma 6 (Proof-Integrity) If some correct processr get-
sproof ofm from some processp to some correct processq
thenq preceivesm fromp.

Proof. Suppose that some correct processr getsproof of
m from some processp to some correct processq. Thenr
receives(PSEND;m; p; q) from 2f + 1 processes. As links
are reliable and at mostf processes are byzantine, we have
that at leastf + 1 correct processes sent(PSEND;m; p; q)
to r. When sending such a message, each correct process
sends to all processes. Therefore, at leastf + 1 correct
processes send(PSEND;m; p; q) to q, and soq preceivesm
from p. 2

Lemma 7 (Proof-Validity) If some correct processp psends
m to some processq then every correct processr getsproof
ofm fromp to q.

Proof. Suppose that some correct processp psendsm
to some processq, and letr be some correct process. By
Lemma 4, every correct process sends(PSEND;m; p; q) to
r. As links are reliable and at least2f + 1 processes are
correct, we have thatr receives(PSEND;m; p; q) from at
least2f + 1 processes. Therefore,r getsproof ofm from p

to q. 2

Lemma 8 (Eventual timeliness) If processq is a bisource
then there exists�0 andT 0 such that if some correct process
r getsproof ofm from some processp to processq at timet
thenq preceivesm fromp by timemaxft; T 0g+�0.

Proof. (Similar to proof of Proof-Integrity) Suppose that
q is a bisource. Then all incoming and outgoing links of
q are eventually timely, and so there existsÆ andT0 such
that if some correct processp sendsm to q at a timet then
q receivesm by timemaxft; T0g + Æ. Assume that some
correct processr getsproof ofm from some processp to
processq at some timet. Thenr receives(PSEND;m; p; q)
from2f+1 processes. Asr is correct and links are reliable,
at leastf+1 correct processes sent(PSEND;m; p; q) to r by
time t. When a correct process sends(PSEND;m; p; q) to r,
it also sends this message to all processes and in particular
to q, and this happens by timet. Sinceq is a bisource, by
timemaxft; T0g+ Æ, q receives(PSEND;m; p; q) from ev-
ery correct process, and hence fromf +1 processes. When
this happens,q preceivesm from p if it has not done so
already. 2

Proof of Theorem 1. Integrity follows from Lemma 3.
Validity follows from Lemma 5. Proof-Integrity follows
from Lemma 6. Proof-Validity follows from Lemma 7.2

Proof of Theorem 2. Integrity,Validity, Proof-Integrity
and Proof-Validity follow from Theorem 1. Eventual time-
liness follows from Lemma 8. 2

5. Consensus

We consider the binary consensus problem, where ev-
ery correct process proposes some value inf0; 1g and must
make an irrevocabledecisionon a value such that

� (Agreement)No two correct processes decide differ-
ently;

� (Validity) If some correct process decidesv, thenv is
proposed by some correct process;

� (Termination) Every correct process eventually de-
cides some value.

Figure 3 shows an implementation of binary consensus
for a system byzantine failures withn � 3f + 1 and at
least one bisource. The algorithm was originally inspired



by Ben-Or’s randomized algorithm [4], with many modifi-
cations; it uses as subroutines consistent unique broadcast
and eventually timely provable reliable send.

Description. Each processp keeps a current estimate
of the decision value, which is initially the value thatp
proposes to consensus. The algorithm proceeds by rounds,
where each round has four phases: certification, reporting,
proposing, and consulting the coordinator. In the certifi-
cation phase,p uses consistent unique broadcast to send its
estimate to all processes. Processp considers a valuev to be
certifiedif p delivers at leastf+1 certification messages for
v. This guarantees that at least one such a message comes
from a correct process. Processp waits to deliver certifica-
tion messages fromn� f processes, and thenp changes its
estimate to the value that was delivered most.

In the reporting phase,p broadcasts its estimatev (we
sayp reportsv). Thenp waits to delivern � f messages
for values that are certified. As time passes, this phase can
complete not becausep receives further report messages,
but becausep receives certification messages that causes a
value to become certified. Thenp picks the valuew that
appears in most messages.

In the proposing phase,p checks if all report messages
for a certified value is forw and, if so,p broadcastsw (we
say p proposesw); elsep proposes?. Thenp waits for
delivery of n � f proposal messages for eitherw or ? if
1� w is certified.

In the consulting phase,p first determines whether to
change its estimate and whether to accept the coordinator’s
value, according to four cases based on how many proposals
p delivers for a valuex 6= ?:

� Case 1:p deliversn�f proposals forx: In this case,p
decidesx and does not accept the coordinator’s value.

� Case 2: p deliversn � 2f proposals forx: In this
case,p changes its estimate tox and does not accept
the coordinator’s value.

� Case 3: p deliversn � 3f proposals forx: In this
case,p changes its estimate tox, and later accepts the
coordinator’s value ifp does not time out on the coor-
dinator.

� Case 4:p delivers less thann � 3f proposals forx:
In this casep accepts the coordinator’s value ifp does
not time out on the coordinator.

Thenp sends its current estimate to the coordinator using
provable reliable send. The coordinator rotates with each
round: for roundk, the coordinator is processk mod n.
Whenp knows that at leastn� f processes have sent their
estimates to the coordinator,p starts a timer. Ifp receives
the coordinator’s value within a timeout period, andp previ-
ously decided to accept its value, thenp changes its estimate

to the received value. On the other hand, ifp times out on
the coordinator,p increases the timeout for the future, in
case it was a premature timeout.

The coordinator waits to receiven � f estimates from
processes, picks the value that occurs most, and sends back
this value to processes.

Intuition. The algorithm uses various mechanisms to
solve consensus:

� Like Ben-Or’s algorithm, the reporting and proposing
phases ensure that at most one non-? can be sent in the
propose phase by correct processes. This ensures that,
in each round, processes attempt to decide on only one
value, which is important for agreement.

� Unlike Ben-Or’s algorithm, we use an extra certifica-
tion phase to ensure that if all processes start with the
same valuez, then reports for1 � z (from byzantine
processes) are ignored.

� We use consistent unique broadcast to ensure that
byzantine processes cannot propose two different val-
ues in the same phase.

� We replace the random coin tosses of Ben-Or’s algo-
rithm with a coordinator in the consulting phase.

� In the consulting phase, processes can fall in one of the
four cases described before, according to how many
times they see a non-? value in the proposing phase.
Ben-Or’s algorithm only has three cases. With only
three cases, our algorithm would not work.

� Finally, because coordinators can be byzantine, we
have the following problem: (a) a byzantine coordi-
nator may pretend that it never receives messages, and
processes waiting for the coordinator must eventually
time out, (b) however, a correct processp cannot start
the timeout timer as soon asp asks help to the coordi-
nator, because the coordinator may be correct but other
processes may be lagging behind in previous rounds,
so that the coordinator will not get enough estimates to
respond; so,p must wait untilp knows that the other
correct processes have also sent their estimate to the
coordinator. To do that, processes could try to broad-
cast their estimates to the coordinator; thenp can start
its timer whenp deliversn � f such broadcasts. But
this idea requires the broadcast to be timely: the co-
ordinator also needs to receive then � f messages in
a bounded amount of time. As we show, such timely
reliable broadcast cannot be implemented in a system
with only one bisource. We solve this problem with
eventually timely provable reliable send, which allows
processes to know whenn � f messages are on their
way to the coordinator in a timely fashion when the
coordinator is a bisource.



Code for processp:

Initialization:
Timeout 1

function certified(k)
1 return fw : cudelivered(CERTIFY; k; w) from at leastf + 1 processesg

To propose(v):
2 k  0
3 while truedo
4 k k + 1

(* phase 0: certification *)
5 cubcast(CERTIFY; k; v)
6 wait until cudeliver(CERTIFY; k; �) fromn � f processes

(* phase 1: reporting estimates *)
7 v  valuecudeliveredmost in(CERTIFY; k; �) messages
8 cubcast(REPORT; k; v)
9 wait until cudeliver(REPORT; k; �) from n� f processes with� 2 certified(k)

(* phase 2: proposing the most common estimate *)
10 w valuecudeliveredmost in(REPORT; k; �) messages
11 if all (REPORT; k; �) with � 2 certified(k) are forw
12 then cubcast(PROPOSE; k; w)
13 elsecubcast(PROPOSE; k; ?)
14 wait until cudeliver(PROPOSE; k; �) from n� f processes with� = w

or (� = ? and1� w 2 certified(k))

(* phase 3: consulting coordinator *)
15 acceptcoord newestimate true
16 if cudelivered(PROPOSE; k; x) with x 6= ? fromn � f processesthen
17 decidex
18 v  x
19 acceptcoord newestimate false
20 else ifcudelivered(PROPOSE; k; x) with x 6= ? from n � 2f processesthen
21 v  x
22 acceptcoord newestimate false
23 else ifcudelivered(PROPOSE; k; x) with x 6= ? from n � 3f processesthen
24 v  x
25 psend(HELP-REQ; k; v) to k mod n
26 wait until getproofof (HELP-REQ; k; �) from n� f processes tok mod n
27 start time clock()
28 wait until received(HELP-RESP; k; y) from k mod n or clock()� start time> Timeout
29 if received(HELP-RESP; k; y) from k mod n then
30 if acceptcoord newestimatethen v  y
31 elseTimeout Timeout+ 1

(* coordinator’s help *)
upon preceive(HELP-REQ; k; �) from n� f processesdo

32 z  value that occurs most in(HELP-REQ; k; �) messages
33 send(HELP-RESP; k; z) to all

Figure 3. Implementation of binary consensus in a system with n � 3f +1 and at least one bisource.



We now state some key properties for the correctness of
the algorithm. Detailed proofs are omitted because of space
limitations; they will be included in the full version of the
paper.

Lemma 9 If all correct processes start roundk with the
same valuev then they all decidev in roundk.

Lemma 10 In round k, if two correct processes propose
v1 6= ? andv2 6= ?, respectively, thenv1 = v2.

Corollary 11 For each roundk, there exists a non-? value
vk such that if a correct process delivers(PROPOSE; k; v)
from a correct process thenv = vk or v = ?.

Lemma 12 The valuew that a correct processp chooses
in line 10 is in certified(k) whenp executes line 10.

Lemma 13 If a correct processp proposes? in round k

then at the time of the broadcast,f0; 1g � certified(k) at p.

Lemma 14 If z 2 certified(k) at some correct processp
then eventuallyz 2 certified(k) at every correct process.

Lemma 15 In every roundk, correct processes do not get
stuck in phases 0, 1, 2 or 3.

As previously observed, a correct processp can be in
four cases regarding how it executes the consulting phase:
(Case 1)p deliversn � f proposals for a non-? value and
executes lines 17–19, (Case 2)p deliversn � 2f propos-
als for a non-? value and executes lines 21–22, (Case 3)p

deliversn � 3f proposals for a non-? value and executes
line 24 or (Case 4)p delivers less thann � 3f proposals
for a non-? value. We now show that in any given round,
correct processes always fall into two consecutive cases.

Lemma 16 In any roundk, all correct processes fall in
Cases 1 or 2, or they all fall in Cases 2 or 3, or they all
fall in Cases 3 or 4.

Lemma 17 (Termination) Every correct process eventu-
ally decides some value.

Lemma 18 If in roundk correct processesp andp0 decide
x andx0, respectively, thenx = x0.

Lemma 19 If a correct processp decidesx in roundk then
all correct processes start roundk + 1 with their estimates
set tox.

Corollary 20 If a correct processp decidesx in round k
then all correct processes decidex in roundk + 1.

Lemma 21 (Agreement)No two correct processes decide
differently.

Corollary 22 (Validity) If some correct process decidesv,
thenv is proposed by some correct process.

Theorem 23 Consider a system with byzantine failures
such thatn � 3f + 1 and there exists at least one correct
process whose outgoing and incoming links are eventually
timely. The algorithm in Figure 3 solves consensus.

Proof. Agreement follows from Lemma 21. Valid-
ity follows from Corollary 22. Termination follows from
Lemma 17. 2

6. Weakness of having one bisource

With byzantine failures, we now show that a systemS0

byz

with at least one bisource is strictly weaker than a system
Sbyz where all links are eventually timely, in terms of prob-
lem solvability. To do so, we show that a type of broad-
cast, calledeventual timely broadcast, can be implemented
in Sbyz , but it cannot be implemented inS0

byz . This impos-
sibility result also implies that timely reliable broadcast [11]
and timely atomic broadcast [11] cannot be implemented in
S0

byz .
In contrast, with crash failures,eventual timely broadcast

can be implemented in both a systemScrash where all links
are eventually timelyanda systemS0

crash with at least one
bisource.

Eventual timely broadcastis defined by two prim-
itives, broadcast(m) and deliver(m; p). If p invokes
broadcast(m), we say thatp broadcastsm. If q invokes
deliver(m; p), we say thatq deliversm from p. Eventual
timely broadcast ensures the following:

� (Eventual timely validity)There exists a timeT and a
value
 such that, if a correct processp broadcastsm
at timet > T , then every correct process deliversm
from p before timet+ 
;

� (Unforgeability)If a correct processp does not broad-
castm then no corrrect process deliversm from p.

Theorem 24 Consider a system with byzantine failures
wheren � 3, n� f � 2, and some correct process has in-
coming and outgoing links that are eventually timely. There
is no implementation of eventual timely broadcast.

Proof. By way of contradiction, assume there is such
an implementation. Construct a runR as follows. Pick
some processs to be a bisource, by choosing someÆ such
as Æ = 2n and making every message sent bys at some
time t be received by timet + Æ. Pick some processp 6= s

to be correct, and letp use the implementation of eventual
timely broadcast to broadcast distinct messages infinitely



often. Let every message sent fromp to a process differ-
ent froms at some timet be received after time2t. Since
the implementation of eventual timely broadcast is correct,
there exists some timet0 and a value
 such that every mes-
sage broadcast byp after timet0 is delivered within
 time
units. Letq be a correct process different froms and p.
Sincep broadcasts infinitely often, thenp broadcasts a mes-
sagem at some timet1 > maxft0; 
g. Such a message is
delivered byq at some timet2 � t1 + 
. Moreover, every
message sent byp to any process different froms between
timest1 andt2 is received after timet2: this is because such
messages are received after time2t1 and2t1 > t1+
 � t2.

Now consider a runR0 that is identical toR up to time
t1, but (a) at timet1, p does not broadcastm, (2) s in R0

is a byzantine process (3) all processes exceptp have the
same behavior as in runR up to timet2, (4) after timet2,
messages to and fromp are delayed by at mostt2 time units,
so thatp is a bisource. For processq, runsR andR0 are
indistinguishable until timet2. Thus,q deliversm from p

at timet2, contradicting the Unforgeability property. 2

Since both timely reliable broadcast [11] and timely
atomic broadcast [11] can be used to implement eventual
timely broadcast, we have the following:

Corollary 25 Consider a system with byzantine failures
wheren � 3, n � f � 2, and some correct process
has incoming and outgoing links that are eventually timely.
There is no implementation of timely reliable broadcast or
of timely atomic broadcast.

If all links are eventually timely, then it is trivial to im-
plement eventual timely broadcast: to broadcastm, process
p sends(ETB;m; p) to all, and everyq delivers(m) whenq
receives(ETB;m; p) from p. We thus have the following:

Theorem 26 In a system with byzantine failures where all
links are eventually timely, there is an implementation of
eventual timely broadcast.

7 Conclusion

Algorithms that work with general failures and weak as-
sumptions have better coverage than algorithms that work
with restricted failures and strong assumptions. In this
paper, we studied the implementability of consensus with
byzantine failures and with weak assumptions on syn-
chrony. We have shown that consensus is possible in system
S0

byz , in which there exists some unknown non-faulty pro-
cess whose incoming and outgoing links are all eventually
timely. We have also shown thatS0

byz is less powerful than
systemSbyz , in which all the links are eventually timely.
Some open problems regarding consensus remain in sys-
tems with byzantine failures: can consensus be solved if
there exists at least one non-faulty processs whosen � 1

outgoinglinks are all eventually timely? How about ifs has
only f outgoing links that are eventually timely? (Recall
that withcrash failures, this condition is sufficient to solve
consensus.) We conjecture that the answer is negative in
both cases.
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