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Abstract

We use a straightforward bivalency argument borrowed from Fischer et al. [7] to show that in a
synchronous system with up to t crash failures solving consensus requires at least t + 1 rounds. The
proof is simpler and more intuitive than the traditional one: It uses an easy forward induction rather than
a more complex backward induction which needs the induction hypothesis several times.

1 Background

A fundamental result of distributed computing is that solving consensus in a synchronous system with up
to t process crashes requires at least t + 1 rounds [9, 8, 5]. The traditional proof of this result proceeds by
a rather complex backward induction that uses the induction hypothesis several times [10]. In this note, we
provide a much simpler and intuitive proof: it uses an easy forward induction and it is based on a standard
bivalency argument. Proofs similar to ours have been independently found by Moses and Rajsbaum [11],
and by Bar-Joseph and Ben-Or [2] (see Section 3 for details on related work).

In the following, we consider systems where processes proceed in synchronized rounds: in each round,
every process sends messages to other processes, receives all the messages sent to it in that round, and
changes state accordingly. When a process crashes in a round, it sends a subset of the messages that it
intends to send in that round, and does not execute any subsequent rounds. A correct process is one that
never crashes.

In the consensus problem, every process starts with some initial value and must make an irrevocable
decision on a value such that:

Agreement: No two correct processes decide differently.

Validity: If some correct process decides v, then v is the initial value of some process.

Termination: Every correct process must eventually decide some value.
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2 The Proof

We now show that any consensus algorithm that tolerates t crashes requires t+1 rounds. Roughly speaking,
the proof proceeds by contradiction as follows. Suppose there is a consensus algorithm A that tolerates up
to t crashes and always terminates in t rounds. We first show that in any run of A, the configuration at the
beginning of round t must be univalent. We then obtain a contradiction by constructing a run of A that is
bivalent at the beginning of round t. This run is obtained by starting from a bivalent initial configuration and
extending it one round at a time, while maintaining bivalency. Each one-round extension may require the
killing of a process.

Theorem 1 Consider a synchronous round-based system S with n processes and at most t crash failures
such that at most one process crashes in each round. If n > t + 1 then there is no algorithm that solves
consensus in t rounds in S .

The proof is by contradiction. Suppose there is an algorithm A that solves consensus in t rounds in S .
Without loss of generality, we can assume that A is loquacious, i.e., at every round, each process is supposed
to send a message to every process.

We consider the configuration of the system S at the end of each round (this is also the configuration
of the system just before the start of the next round). Such a configuration is just the state of each process
(which also indicates the current round number and whether it has crashed in a previous round). Informally, a
configuration C is 0-valent [1-valent] if starting from C the only possible decision value of correct processes
is 0 [1]; C is univalent it is either 0-valent or 1-valent; C is bivalent if it is not univalent.

In the following, a k-round partial run r k denotes an execution of algorithm A up to the end of round k.
Consider the configuration Ck at the end of round k of partial run rk. We say that rk is 0-valent, 1-valent,
univalent, or bivalent if Ck is 0-valent, 1-valent, univalent, or bivalent, respectively.

We proceed by proving three lemmata. The third one contradicts the first and thus completes the proof
of the theorem.

Lemma 1 Any (t − 1)-round partial run r t−1 is univalent.

Proof: The proof is by contradiction. Suppose there is a bivalent (t − 1)-round partial run r t−1. Let r0 be
the t-round run obtained by extending r t−1 by one round such that no process crashes in round t. Without
loss of generality assume that all correct processes decide 0 in r 0. Since partial run rt−1 is bivalent, there is
at least one t-round run r1 that extends rt−1 such that all correct processes decide 1. Note that in round t of
r1: (a) exactly one process p must crash (recall that in each run at most one process crashes per round), and
(b) p must fail to send a message to at least one correct process, say c.

Construct run r0,1 which is identical to r1, except that p sends its message to c. Let c ′ be a process that
does not crash in r0,1 and is different from c. Such a process must exist since n > t + 1 implies that there
are at least two correct processes in the system. Note that: (a) c cannot distinguish between r 0,1 and r0; (b)
c′ cannot distinguish between r 0,1 and r1. By (a), c decides 0 in r0,1, while by (b) c′ decides 1 in r0,1 — a
violation of the agreement property of consensus. 2

Lemma 2 There is a bivalent initial configuration.

Proof: (Same as in Fischer et al. [7]) Suppose, for contradiction, that every initial configuration is univalent.
Consider the initial configurations C 0 and C1 such that all processes have initial value 0 and 1, respectively.
By the validity property of consensus, C 0 is 0-valent and C1 is 1-valent. Clearly, there are two initial
configurations that differ by the initial value of only one process p, such that one is 0-valent and the other is
1-valent. We can easily reach a contradiction by crashing p at the beginning of round 1 (before it sends any
messages to any process). 2
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Lemma 3 There is a bivalent (t − 1)-round partial run r t−1.

Proof: We show by induction on k that for each k, 0 ≤ k ≤ t − 1, there is a bivalent k-round partial run
rk.
BASIS: By Lemma 2, there is some bivalent initial configuration C0. For k = 0, let r0 be the 0-round partial
run that ends in C0.
INDUCTION STEP: Suppose 0 ≤ k < t − 1. Let rk be a bivalent k-round partial run. We now show that
rk can be extended by one round into a bivalent (k + 1)-round partial run r k+1. Assume, for contradiction,
that every one-round extension of rk is univalent.

Let r∗k+1 be the partial run obtained by extending r k by one round such that no new crashes occur.
Partial run r∗k+1 is univalent. Without loss of generality assume it is 1-valent. Since r k is bivalent, and every
one-round extension of rk is univalent, there is at least one one-round extension r 0

k+1 of rk that is 0-valent.
Note that r∗k+1 and r0

k+1 must differ in round k + 1 (and only in that round). Since round k + 1 of r ∗
k+1

is failure-free, there must be exactly one process p that crashes in round k + 1 of r 0
k+1 (recall that in each

run, at most one process crashes per round). Since p crashes in round k + 1 of r 0
k+1 it may fail to send a

message to some processes, say to q1, q2, . . . , qm, where 0 ≤ m ≤ n.1

Starting from r0
k+1, we now define (k + 1)-round partial runs r1

k+1, . . . , r
m
k+1 as follows. For every j,

1 ≤ j ≤ m, rj
k+1 is identical to rj−1

k+1 except that p sends a message to qj before it crashes in round k + 1.

Note that for every j, 0 ≤ j ≤ m, rj
k+1 is univalent. There are two possible cases:

1. For all j, 0 ≤ j ≤ m, rj
k+1 is 0-valent. So rm

k+1 and r∗k+1 are 0-valent and 1-valent, respectively. The
only difference between rm

k+1 and r∗k+1 is that p crashes at the end of round k + 1 in rm
k+1, while p is

correct up to and including round k+1 in r ∗
k+1. Consider the following run r extending r ∗

k+1. Process
p crashes at the beginning of round k + 2 (before it sends any messages in that round), and there are
no more crashes. Since r∗k+1 is 1-valent, all correct processes decide 1 in run r. For every process
except p, run r is indistinguishable from the run r ′ that extends rm

k+1 such that no process crashes after
round k + 1. But all correct processes decide 0 in r ′ (because rm

k+1 is 0-valent) — a contradiction.

2. There is a j, 1 ≤ j ≤ m, such that rj−1
k+1 is 0-valent while rj

k+1 is 1-valent. Extend partial runs r j−1
k+1

and rj
k+1 into runs r and r ′, respectively, by crashing process qj at the beginning of round k + 2

(before it sends any message in that round),2 and continuing with no additional crashes. Note that (a)
no process except qj can distinguish between r and r ′, and (b) all correct processes must decide 0 in
r and 1 in r′ — a contradiction.
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3 Related Work

The (t + 1)-rounds lower bound for consensus was first proved for synchronous systems with Byzantine
process failures [6]. This lower bound was extended first to systems with Byzantine failures and message
authentication [3, 4], and then to systems with crash failures [9, 8]. A refinement of the (t+1)-rounds lower
bound was later obtained by determining the number of rounds necessary to reach (simultaneous) consensus,
given the pattern in which crashes occur [5]. The lower-bound proof in [6] is for byzantine failures, and it
is not clear that it can be extended to more benign models of failures. On the other hand, the lower-bound
proofs in [3, 4, 9, 8] are based on a relatively complex backward induction, and they do not use bivalency
arguments.

1It is possible that in round k + 1 of r0
k+1 process p sends a message to every process, and then crashes at the end of this round.

In this case, m = 0.
2If qj already crashed before round k + 2, we don’t crash it in round k + 2.
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Moses and Rajsbaum [11], and Bar-Joseph and Ben-Or [2] have independently found a (t + 1)-rounds
lower bound proof that is similar to ours. In [11], Moses and Rajsbaum introduce the notion of layering,
and use it to provide a unified analysis of consensus that can be applied to several models of distributed
computation, including asynchronous shared memory with crash failures, asynchronous and synchronous
message passing with crash failures, and synchronous message passing with mobile failures. 3 A layering is
defined as a function S that maps a state to a set of (not necessarily immediate) successor states; intuitively,
it allows one to focus on “interesting states” within “interesting runs”. Using layering, [11] proves some
general results on consensus. In particular, a lemma shows that given a bivalent state x, if S(x) satisfies a
certain condition then x has a successor state that is also bivalent. For the round-based synchronous model,
[11] defines a specific layering S,4 and uses this lemma to obtain a run with a bivalent state at the end of
t − 1 rounds. To complete the (t + 1)-rounds lower bound proof, [11] shows that after reaching a bivalent
state, two extra rounds are necessary for the decision.

In [2], Bar-Joseph and Ben-Or show tight upper and lower bounds of Θ(t/
√

n logn) on the expected
number of rounds needed for randomized consensus in synchronous systems with crash failures, and with a
full-information and adaptive adversary. While [2] does not explicitly show the (t + 1)-round lower bound
result, it contains the essence of the bivalency-based proof of our paper.

The bivalency argument was first introduced by Fischer, Lynch and Paterson [7] in the context of asyn-
chronous systems (to prove that consensus cannot be solved in the presence of crashes). To the best of our
knowledge, the first paper to use a bivalency argument in the context of synchronous systems was [12].
Specifically, bivalency is used in [12] to show a general result on the impossibility of consensus that can be
applied to synchronous systems where one process can fail per round, but there is no bound on the number
of rounds with failures (e.g., a system with recurrent mobile failures).
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