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Abstract In a ground-breaking paper that appeared in
1983, Ben-Or presented the first randomized algorithm to
solve consensus in an asynchronous message-passing system
where processes can fail by crashing. Although more efficient
randomized algorithms were subsequently proposed, Ben-
Or’s algorithm is still the simplest and most elegant one. For
this reason, it is often taught in distributed computing courses
and it appears in several textbooks. Even though Ben-Or’s
algorithm is widely known and it is very simple, surprisingly
a proof of correctness of the algorithm has not yet appeared:
previously published proofs make some simplifying assump-
tions—specifically, they either assume that f < n/3 (n is the
total number of processes and f is maximum number of pro-
cesses that may crash) or that the adversary is weak, that is, it
cannot see the process states or the content of the messages.
In this paper, we present a correctness proof for Ben-Or’s
randomized consensus algorithm for the case that f < n/2
process crashes and the adversary is strong (i.e., it can see
the process states and message contents, and schedule the
process steps and message receipts accordingly). To the best
of our knowledge, this is the first full proof of this classi-
cal algorithm. We also demonstrate a counterintuitive prob-
lem that may occur if one uses the well-known abstraction

M. K. Aguilera (B)
Microsoft Research Silicon Valley, 1065 La Avenida,
Mountain View, CA 94043, USA
e-mail: marcos_aguilera_msrsvc@live.com

S. Toueg
University of Toronto, 10 King’s College Road,
Toronto, ON M5S 3G4, Canada

of a “global coin” to modularize and speed up randomized
consensus algorithms, such as Ben-Or’s algorithm. Specifi-
cally, we show that contrary to common belief, the use of a
global coin can sometimes be deleterious rather than benefi-
cial: instead of speeding up Ben-Or’s algorithm, the use of a
global coin in this algorithm may actually prevent termina-
tion.

1 Introduction

The consensus problem, i.e., the problem of processes agree-
ing on an input value, is at the core of many distributed
problems in both theory and practice. In particular, solving
consensus is central to the state machine approach used to
build fault-tolerant services [15]. While consensus can be
solved in synchronous systems for various types of failures
(e.g., see [7]), it is well-known that this problem cannot be
solved in asynchronous message-passing systems, even if we
assume that (a) all communication links are reliable, (b) at
most one process can fail, and (c) a process can fail only by
crashing [11].

Soon after this fundamental impossibility result appeared,
Ben-Or pioneered the use of randomization to circumvent
this result. In particular, in a ground-breaking paper [8],
Ben-Or gave the first randomized algorithm that solves con-
sensus “with probability 1” in an asynchronous message-
passing system with f < n/2, where n is the total number of
processes and f is the maximum number of processes that
may crash.

Even though Ben-Or’s algorithm is widely known and it
is very simple, to the best of our knowledge a full proof
of correctness has not yet appeared: previously published
proofs make some simplifying assumptions; specifically,
they assume either that f < n/3 [14] or that the adversary is
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weak1 [4,13]. The presence of such assumptions in current
proofs leaves an undesirable gap in the knowledge of random-
ized algorithms and raises the following questions: does Ben
Or’s classical randomized consensus algorithm work without
these assumptions? If it works, what are the key reasons for
its correctness? If it does not work, why does it fail?

In this paper, we prove that Ben-Or’s randomized consen-
sus algorithm works without simplifying assumptions; more
precisely, we present a correctness proof for the case that
f < n/2 and the adversary is strong. Intuitively, a strong
adversary is one that can see the process states and mes-
sage contents, and schedule the process steps and message
receipts accordingly. This is the first full proof of this classical
algorithm, which is still the simplest randomized consensus
algorithm for message-passing systems with crash failures.

We also demonstrate a counterintuitive problem that may
occur if one uses the well-known abstraction of a “global
coin” to modularize and speed up randomized consensus
algorithms, such as Ben-Or’s algorithm. In many randomized
consensus algorithms, processes toss coins, and the hope is
that many processes get the same outcome: if this occurs,
consensus is easily reached and the algorithm terminates.
So a common technique to speed up such algorithms is to
replace the independent coins of the processes by a global
coin with a parameter ρ > 0; this is a coin such that, for each
possible outcome v ∈ {0, 1}, with probability at least ρ, all
the processes that toss the coin get the same outcome v [7].
With this technique, an algorithm is first shown to be correct
assuming that processes have access to a global coin with
parameter ρ, and then this global coin is implemented and
proven correct. Intuitively, the higher the parameter ρ of the
global coin is, the faster agreement and termination occurs.

We show that this intuition can be flawed by exposing
a subtle pitfall associated with the use of a global coin. To
do so, we consider the global-coin variant of Ben-Or’s algo-
rithm: this is exactly like Ben-Or’s algorithm except that we
substitute the independent coins of the processes by a global
coin with parameter ρ = 1/2, i.e., when processes toss this
coin, with probability 1/2 they all get 0, and with probability
1/2 they all get 1. Intuitively, this substitution should reduce
the expected termination time of the algorithm. But does it
really do so?

We prove here that, under a strong adversary, the global-
coin variant of Ben-Or’s algorithm actually does not work:
in fact, with probability at least 1/2, it does not terminate. We
prove this by constructing a run where, if the strong adver-
sary is lucky for the first coin toss in the first round (this
occurs with probability 1/2), it can thereafter schedule the
process steps and message receipts in a way that prevents
processes from ever deciding. The construction of this run is

1 Intuitively, a weak adversary is a scheduler that cannot see the process
states or the content of the messages.

somewhat subtle, and it illustrates a potential pitfall of using
the abstraction of a global coin in conjunction with a strong
adversary.

In summary, the contribution of this paper is twofold:

(1) We present a proof that Ben-Or’s randomized consen-
sus algorithm works against a strong adversary for any
f < n/2 crash failures. To the best of our knowledge,
this is the first such proof for this classical and simple
algorithm.

(2) We prove that the global-coin variant of Ben-Or’s algo-
rithm does not work against a strong adversary for any
f such that n/3 ≤ f < n/2. This shows that, contrary
to a common belief, replacing independent coins with a
global coin (in a randomized consensus algorithm) can
sometimes be deleterious rather than beneficial: instead
of speeding up the algorithm, the use of a global coin
may actually prevent termination.

Note that if f < n/3, then the global-coin variant of Ben-
Or’s algorithm does work against a strong adversary: the
proof is very similar to the one of Ben-Or’s algorithm given
in [14, Chapter 21.3] for the case that f < n/3. Together with
our result (2) above, this implies that the global-coin variant
of Ben-Or’s algorithm works against a strong adversary if
and only if f < n/3.

As a final remark, we note that our proof that Ben-Or’s
algorithm works under a strong adversary for any f < n/2
is not as simple as one may expect given the simplicity of
the algorithm itself. In fact, the arguments that we use in
this proof encompass what happens over pairs of consecu-
tive rounds (reasoning one round at a time is not sufficient).
But the complexity of this proof is probably not accidental:
any proof of correctness must work when processes use inde-
pendent coins, but it must also fail when we substitute these
coins with a global coin in the case that n/3 ≤ f < n/2, and
the reason for this failure is somewhat subtle (as illustrated
by the non-terminating run that we construct in Sect. 7).

A preliminary version of this paper appeared as a techni-
cal report [6]. Since Ben-Or’s message-passing randomized
consensus algorithm was published, many other randomized
consensus algorithms appeared, especially for shared-mem-
ory systems. In Sect. 8, we briefly discuss some recent work
in this area.

Roadmap We first describe our model in Sect. 2 and the
consensus problem in Sect. 3. We then present Ben-Or’s ran-
domized consensus algorithm in Sect. 4, and its proof of
correctness, under a strong adversary and any f < n/2, in
Sect. 5. In Sect. 6 we describe the global-coin variant of
Ben-Or’s algorithm, and in Sect. 7 we prove that it does
not terminate under a strong adversary and f ≥ n/3. In
Sect. 8, we briefly discuss some recent work in the area of
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randomized consensus. We conclude the paper with some
remarks in Sect. 9.

2 Informal model

Our model is patterned after the one in [11] and we only
sketch its main features here. We consider asynchronous mes-
sage-passing distributed systems where processes may crash
but communication channels are reliable. In these systems,
there is no bound on message delay, clock drift, or the time
a process takes to execute a step, but every message sent to
a non-faulty process is eventually received. To simplify the
presentation, we assume the existence of a discrete global
clock. This is merely a fictional device: the processes do not
have access to it. We take the range T of the clock’s ticks to
be the set of natural numbers N.

There are n ≥ 2 processes, Π = {p1, . . . , pn}, at most
f of them may crash, and every pair of processes is con-
nected by a reliable communication channel. Each process
has access to a coin that it can toss to obtain independent
random bits. For simplicity, we assume a uniform distribu-
tion, i.e., when a process tosses its coin, it obtains 0 or 1,
each with probability 1/2. In Sect. 6, we also consider global
coins, which we define precisely in that section.

A distributed algorithm A is a collection of n deterministic
automata (one for each process in the system) that commu-
nicate by sending messages through the reliable channels.
The execution of A occurs in steps as follows. For every
time t ∈ T , at most one process takes a step. Each step
consists of receiving a message; optionally tossing a coin;
changing state; and optionally sending a message to one pro-
cess. Since channels are reliable, messages are never lost: if a
process does not crash, it eventually receives every message
sent to it.

A schedule is a sequence {s j } j∈N of processes and a
sequence {t j } j∈N of strictly increasing times. A schedule
indicates which processes take a step and when: for each
j , process s j takes a step at time t j . A process crashes (in
a schedule) if it takes only a finite number of steps (in that
schedule). If a process does not crash, we say that is it correct.

Adversary power When designing fault-tolerant algorithms,
we often assume that an adversary has some control on the
behavior of the system, e.g., the adversary may be able to
control the occurrence and the timing of process failures, the
message delays, and the scheduling of processes. Adversar-
ies may have limitations on their computing power and on
the information that they can obtain from the system. Dif-
ferent algorithms are designed to defeat different types of
adversaries (e.g., see [10]).

The results in this paper concern a strong adversary, which
has unbounded computational power and full knowledge of

all process steps that already occurred. In particular, it knows
the contents of all messages sent, the internal state of all pro-
cesses in the system, and the outcome of all the previous
coin tosses. With this information, at any time in the exe-
cution, the adversary can dynamically select which process
takes the next step and which message this process receives
(if any). The adversary, however, operates under the follow-
ing restrictions: every message sent to a correct process must
eventually be received and the final schedule may have at
most f crashed processes.

3 The consensus problem

In the binary consensus problem every process p has some
initial value vp ∈ {0, 1}, and must decide on a value such
that the following safety and liveness properties hold.

(Safety properties)

– Uniform agreement: No two processes decide differently.
– Uniform validity: If any process decides v, then v is the

initial value of some process.

(Liveness property)

– Termination: Every correct process eventually decides.

For randomized consensus algorithms, the liveness property
is weakened to

– Termination with probability 1: With probability 1, every
correct process eventually decides.

Henceforth, when we say “consensus”, we refer to the binary
consensus problem where the liveness property is termina-
tion with probability 1.

4 Ben-Or’s randomized consensus algorithm

Figure 1 shows Ben-Or’s randomized consensus algorithm
for crash failures [8]. The algorithm assumes that a major-
ity of processes are correct, i.e., it assumes that f < n/2.
As Ben-Or remarked in [8], the assumption that f < n/2 is
necessary for any algorithm that solves consensus in asyn-
chronous systems with crash failures, even if processes can
toss random coins. The proof of this is based on a standard
partition argument [8].

Ben-Or’s randomized consensus algorithm, shown in
Fig. 1, is structured as a while loop. Each iteration of this
loop is an (asynchronous) round. In each round, processes
exchange messages twice, and each message exchange is
called a phase. Every message contains a tag (R or P),
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Fig. 1 Ben-Or’s randomized consensus algorithm

a round number, and a value which is either 0 or 1; for mes-
sages tagged P , it could also be “?”. Messages tagged R are
sent in the first phase of a round and are called reports. Mes-
sages tagged with P are sent in the second phase of a round
and are called proposals. When p sends (R, k, v) or (P, k, v)

we say that p reports or proposes v in round k, respectively.
In the first phase of each round, processes report to each

other their current estimate (0 or 1) for a decision value. In
the second phase, if a process receives a strict majority of
reports for the same value v then it proposes v to all pro-
cesses; otherwise it proposes “?”. Note that it is impossible
for one process to propose 0 and another process to propose 1
in the same round. At the end of the second phase, if a pro-
cess receives f + 1 proposals for the same value v different
than ?, then it decides v. If it receives at least one value v dif-
ferent than ?, then it adopts v as its new estimate; otherwise
it adopts a random bit for its estimate.

The algorithm in Fig. 1 does not include a halt statement.
Moreover, once a correct process decides a value, it will keep
deciding the same value in all subsequent rounds. However, it
is easy to modify the algorithm so that every process decides
at most once and halts.2

5 Correctness of Ben-Or’s algorithm under a strong
adversary and f < n/2

In this section, we present a proof that Ben-Or’s algorithm
solves consensus under a strong adversary in a system where
f < n/2. In this proof, we first show that Ben-Or’s algorithm

2 One way to do so is as follows: in line 11, if a process is about to
decide some value v, it first sends a special message (decide, v) to all
processes, then it decides v and halts; any process that receives such a
message sends it to all processes, decides v, and halts.

satisfies the validity and agreement properties of consensus;
this part of the proof is quite simple and standard. We then
show that Ben-Or’s algorithm satisfies termination with prob-
ability 1. This part of the proof is more complex, due to the
power of the adversary and our assumption that almost half
of the processes may fail.3

In the following, we say that process p starts round k if
process p completes at least k−1 iterations of the while loop.
We say that process p reaches line j in round k if process p
starts round k and p executes past line j − 1 in that round.
We say that v is k-locked if every process that starts round k
does so with its variable x set to v. When ambiguities may
arise, a local variable of a process p is subscripted by p, e.g.,
x p is the local variable x of process p. Throughout the proof,
we assume that f < n/2, i.e., less than half of the processes
may crash.

5.1 Agreement and validity

We first show that the algorithm in Fig. 1 satisfies the safety
properties of consensus. In the proof, we use the fact that
processes can report only 0 or 1, and propose only 0, 1, or ?
in each round (this is easily shown by induction).

Lemma 1 It is impossible for a process to propose 0 and a
process to propose 1 in the same round k ≥ 1.

Proof The proof is by contradiction. Suppose that processes
p and p′ propose 0 and 1, respectively, in round k. Thus, p
received more than n/2 reports for 0 and p′ received more
than n/2 reports for 1 in round k. So there is a process that
reports 0 to p and 1 to p′ in round k, and this is impossible.

��
3 Proofs that assume a weaker adversary [13] or fewer failures [14] are
much simpler.

123



The correctness proof of Ben-Or’s randomized consensus algorithm

Lemma 2 If some process decides v in round k ≥ 1, then v

is (k + 1)-locked.

Proof Suppose that some process p decides v in round k≥1
(note that this occurred in line 11 and v �= ?). In round k, p
must have received at least f + 1 proposals for v in line 10.
Let q be any process that starts round k + 1. In round k, q
received n − f proposals in line 10. Since p received f + 1
proposals for v in round k, q received at least one proposal
for v in round k. Moreover, by Lemma 1, q does not receive
any proposals for 1−v in round k. So q sets its variable xq to v

in line 12 in round k and it starts round k+1 with xq = v. ��
Lemma 3 If a value v is k-locked for some k ≥ 1, then every
process that reaches line 12 in round k decides v in round k.

Proof Suppose v is k-locked for some k ≥ 1. Then, all
reports received in line 6 of round k are for v. Since n− f >

n/2, every process that proposes some value in round k pro-
poses v in line 8. Consider a process p that reaches line 12 in
round k. Clearly, p receives n − f proposals (line 10) for v

in round k. Since n − f ≥ f + 1, p decides v in round k. ��
Corollary 1 If some process decides v in round k ≥ 1, then
every process that reaches line 12 in round k + 1 decides v

in round k + 1.

Proof By Lemmas 2 and 3. ��
Corollary 2 (Uniform agreement) If some processes p and
p′ decide v and v′ in round k ≥ 1 and k′ ≥ 1, respectively,
then v = v′.

Proof Suppose some processes p and p′ decide v and v′ in
round k ≥ 1 and k′ ≥ 1, respectively. There are two cases:

(1) k = k′. Since a process can decide a value in round k
only if that value was proposed in round k, both v and v′
were proposed in round k. By Lemma 1, v = v′.

(2) k < k′. Since p′ decides in round k′ then p′ reaches line
12 in rounds k+1, . . . , k′. Since p decides v in round k,
by repeated applications of Corollary 1, p′ decides v in
rounds k + 1, . . . , k′. So p′ decides both v and v′ in
the same round k′. By case (1) above, it must be that
v = v′. ��

Note that in the corollary above p and p′ could be the same
process.

Corollary 3 (Uniform validity) If any process p decides v,
then v is the initial value of some process.

Proof Suppose, for contradiction, that a process p decides
a value v in some round but no process has initial value v.
Then, all the processes have initial value 1−v and so 1−v is
1-locked. From Lemma 3, p decides 1−v in round 1. So p
decides both v and 1−v, which is a contradiction to Corol-
lary 2. ��

5.2 Termination

We now show that the algorithm satisfies the required
liveness property, that is, it terminates with probability 1.
We first give some intuition as to how the proof works, and
then give the precise proof.

To show liveness we prove that with probability 1, some
value v is k-locked for some k; therefore, by the argument
of the previous section, all processes that complete round k
decide v. To prove that with probability 1 some value v is
k-locked, we group together pairs of adjacent rounds into
epochs: an epoch r consists of rounds 2r and 2r + 1. For
each epoch r , we consider a game that is played between the
adversary and the random coins, where the adversary is try-
ing the prevent a value from becoming locked at the end of
the epoch. We show that, no matter what the adversary does
in the epoch, there is a “lucky” choice of coin tosses that will
foil the adversary, causing a value to be locked at the end of
the epoch. Since there are at most 2n coin tosses in an epoch,
the probability that all coin tosses are lucky is at least 2−2n .
Since the game is played repeatedly forever, the probability
that in some epoch all the coin tosses are lucky is 1.

We now give an intuition of how to define the lucky coin
tosses, that is, the coin tosses that cause a value to be locked
at the end of the epoch. Note that each process changes its
variable x to some value v ∈ {0, 1} at the end of each round
in line 12, and this can happen in two ways: v can be obtained
from a coin toss, or it can be a value proposed in the round.
In the first case, we say that the process R-gets v; in the sec-
ond, the process D-gets v. We say that a value v is k-major
at a time t if, by time t , a majority of processes have started
round k with their variable x set to v. It is easy to show that
if a value v is k-major at some time, then v is the only value
that a process can D-get in round k. To define the lucky coin
tosses, note that processes can toss coins in a round k only
after the time when some process has first received n − f
proposals in round k; this time is denoted τk . The lucky coins
of epoch r (i.e., of rounds k and k + 1 for k = 2r ) depend
on what happens at times τk and τk+1, as follows:

– Case 1: at time τk , some value v is k-major. We define
the lucky coins of epoch r to be all v. Thus, in round k,
if a process D-gets a value, it D-gets v and if it R-gets a
value and the coins are lucky, it R-gets v as well, causing
v to be locked at the end of round k.

– Case 2: at time τk , no value is k-major. We define the
lucky coins of epoch r to be 0 until time τk+1 (before
any process tosses a coin in round k + 1). The subse-
quent lucky coins, i.e., those that occur in epoch r af-
ter time τk+1, depend on what happens at time τk+1, as
follows:

– Case 2.1: at time τk+1, 0 is (k + 1)-major. Then the
subsequent lucky coins of epoch r are still defined to
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be 0. Thus, in round k+1, if a process D-gets a value,
it D-gets 0 and if it R-gets a value and the coins are
lucky, it R-gets 0 as well, causing 0 to be locked at
the end of round k + 1.

– Case 2.2: at time τk+1, 0 is not (k + 1)-major. Then
the subsequent lucky coins of epoch r are defined to
be 1. In this case, we will show that, in round k+1, if
a process D-gets a value, it D-gets 1 and if it R-gets
a value and the coins are lucky, it R-gets 1 as well,
causing 1 to be locked at the end of round k + 1.

With this definition of lucky coins, if the coins are lucky, then
in all cases some value is locked at the end of the epoch. We
now present the detailed liveness proof.

Lemma 4 Every correct process starts every round k ≥ 1.

Proof The proof is by a standard induction on the round k.
Clearly, every correct process starts round k = 1. Suppose
every correct process starts a round k ≥ 1. Then at least n− f
correct processes report a value in line 5 of round k, so every
correct process receives reports from at least n− f processes
in line 6 of round k. Thus at least n − f correct processes
propose a value in line 8 or 9 of round k, and every correct
process receives proposals from at least n − f processes in
line 10 of round k. So every correct process completes its wait
statement in line 10 of round k, and starts round k + 1. ��
Corollary 4 If a value v is k-locked for some k ≥ 1, then
every correct process decides v in round k.

Proof Immediate from Lemmas 3 and 4. ��
For each k ≥ 1, we say that a value v is k-major at time t

if by time t more than n/2 processes have started round k
with their variable x set to v.4 Clearly, for each k ≥ 1 and all
times t and t ′, it is impossible for 0 to be k-major at t , and 1
to be k-major at t ′.

Consider a process p that sets its variable x p to v in line 12
of round k. If v was obtained from tossing a coin, we say that
p R-gets v in round k; otherwise, we say that p D-gets v in
round k.

Lemma 5 For every k ≥ 1: (1) if some process D-gets v

in round k, then v is k-major at some time; (2) if v is ever
k-major, then v is the only value that a process can D-get in
round k.

Proof Consider round k ≥ 1. Suppose p D-gets v in round
k. Then p received at least one proposal for v from some pro-
cess q. So more than n/2 processes must have reported v to
q in round k. Thus, v was k-major—proving part (1). Part (2)
follows from part (1) and the fact that v and 1−v cannot both
be k-major. ��
4 Recall that a process starts round k when it completes k−1 iterations
of the loop, i.e., right after it executes line 12.

For the rest of the proof, we group pairs of rounds into
epochs as follows: epoch r ≥ 1 consists of rounds k = 2r
and k+1 = 2r+1.5 We now define the concept of a “lucky”
epoch—one in which processes toss coins that cause the ter-
mination of the algorithm no matter what the adversary does.

For every k ≥ 1, let τk be the first time that any process
receives n− f proposals in round k. From Lemma 4, for every
k ≥ 1, some process receives n − f proposals in round k,
and so τk is well-defined. Note that no process tosses a coin
in round k before time τk .

We say that epoch r is lucky if, for every process p and
every time t , if p tosses a coin in epoch r at time t , then
p gets the value FavorableToss(r, t) from the coin, where
FavorableToss(r, t) is the function defined in Fig. 2. Note
that if p tosses a coin in epoch r at time t , this occurs after at
least one process receives n − f proposals in round k = 2r ,
and so this occurs at time t ≥ τk . From the code defining
the function FavorableToss(r, t), it is clear that to evaluate
FavorableToss(r, t) at any time t ≥ τk , one only needs to look
at events that occur in the system up to time t . So whenever
we need to evaluate the function FavorableToss(r, t) to deter-
mine whether a particular coin toss was lucky or not, we only
need to see what happened in the system before this coin toss
occurs.

Lemma 6 For every r ≥ 1, if epoch r is lucky then some
value is (2r + 1)-locked or (2r + 2)-locked.

Proof Throughout the proof of this lemma, fix some arbi-
trary r ≥ 1 and assume that epoch r is lucky. Let k = 2r ;
recall that epoch r consists of rounds k and k+1. Since epoch
r is lucky, if any process R-gets a value v at some time t and
in round k or k+1, then v = FavorableToss(r, t) and τk ≤ t .

Case 1: Suppose some value v is k-major at time τk . By
the definition of FavorableToss, for any t such that
τk ≤ t, FavorableToss(r, t) = v. So, v is the only
value that a process can R-get in round k. Since v is
k-major, by Lemma 5, v is also the only value that
a process can D-get in round k. Thus, every process
that completes round k does so with its variable x
set to v. So, v is (k + 1)-locked.

Case 2: Now assume that no value is k-major at time τk .

Case 2.1: Suppose that 0 is (k + 1)-major at
time τk+1. By the definition of
FavorableToss, for any t such that
τk+1 ≤ t, FavorableToss(r, t) = 0. So, 0
is the only value that a process can R-get
in round k + 1. Since 0 is (k+ 1)-major,
by Lemma 5, 0 is also the only value that
a process can D-get in round k+1. Thus,
0 is (k + 2)-locked.

5 Round 1 is not part of any epoch.
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Fig. 2 Favorable coin toss algorithm

Case 2.2: Now assume that 0 is not (k + 1)-major
at time τk+1. By time τk+1, a majority of
processes started round k + 1. Since 0 is
not (k + 1)-major at time τk+1, by this
time at least one process p starts round
k + 1 with its variable x p set to 1; thus
either p D-got 1, or R-got 1 in round k
at some time τk ≤ t < τk+1. Since no
value is k-major at time τk , for τk ≤ t <

τk+1 we have FavorableToss(r, t) = 0,
and so p D-got 1 in round k. Thus,
by Lemma 5, 1 was k-major at some
time. Since 1 was k-major, by Lemma 5,
1 is the only value that a process can
D-get in round k. Moreover, for τk+1 ≤ t ,
we have FavorableToss(r, t) = 1, and
so 1 is the only value that a process can
R-get in round k at or after time τk+1.
Thus, from time τk+1 on, 1 is the only
value that a process can D-get or R-get
in round k. So, from time τk+1 on, no
process starts round k + 1 with its var-
iable x set to 0. Since at time τk+1, 0 is
not (k + 1)-major, we conclude that 0
is never (k + 1)-major. Since 0 is never
(k+1)-major, by Lemma 5, 1 is the only
value that a process can D-get in round
k + 1. Moreover, for τk+1 ≤ t , we have
FavorableToss(r, t) = 1, and so 1 is the
only value that a process can R-get in
round k + 1. Thus, 1 is (k + 2)-locked.

��

Lemma 7 The probability that some epoch is lucky is 1.

Proof The result is immediate from the following observa-
tion: for every r ≥ 1, (a) the probability that epoch r is lucky
is at least 2−2n (because in each round there are at most n
coin tosses), and (b) for any r ′ �= r , the events “epoch r
is lucky” and “epoch r ′ is lucky” are independent (because
epochs r and r ′ consist of disjoint sets of rounds). ��
Lemma 8 (Termination with probability 1) The probability
that all correct processes decide is 1.

Proof Immediate from Lemmas 7 and 6, and Corollary 4.
��

From the proof of Lemma 7, it is easy to see that the
expected number of rounds for termination is O(22n).

By Corollaries 2 and 3, Ben-Or’s algorithm satisfies the
safety properties of consensus, and by Lemma 8 it satisfies
the liveness property, so we have the following:

Theorem 1 Ben-Or’s algorithm solves consensus under a
strong adversary for any f < n/2.

6 Global-coin variant of Ben-Or’s algorithm

In Ben-Or’s algorithm, if a process receives proposals only
for ? in a round k, it tosses an independent coin and changes
its estimate to the random bit that is the outcome of that coin.
The hope is that every process that completes round k will
change its estimate to the same value, because this immedi-
ately triggers agreement and termination. Thus, intuitively,
if all the processes that toss a coin in a round get the same
random bit, the algorithm should continue to work and its
expected time to terminate should improve dramatically.

The above intuition leads to the well-known concept of
a “global coin”, an abstraction that is commonly used to
speed up and modularize randomized consensus algorithms.
Instead of tossing independent coins, processes toss a global
coin with parameter ρ where 0 < ρ ≤ 1/2; this is a coin
such that for each possible outcome v ∈ {0, 1}, with prob-
ability at least ρ, all the processes that toss the coin get the
same outcome v [7]. The strongest global coin is the one with
parameter ρ = 1/2: all the processes that toss this coin are
guaranteed to get the same random bit, i.e., they all get 0 or
they all get 1, each case with probability 1/2.6

In this paper, we consider the global-coin variant of Ben-
Or’s algorithm where, in each round, processes use the global
coin with parameterρ = 1/2. More precisely, the global-coin
variant of Ben-Or’s algorithm is obtained by replacing line
12 of Ben-Or’s algorithm in Fig. 1 with the following line:

6 Note that this global coin with parameter 1/2 also satisfies the speci-
fication of a global coin with parameter ρ for every ρ (where 0 < ρ ≤
1/2).
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if received at least one (P, k, v) with v �= ? then x ← v

else x ← global-coin(k) {get global coin of round k}

where, for each round k ≥ 1 and each u ∈ {0, 1}, with prob-
ability 1/2, global-coin(k) = u at all processes.

In the next section we show that, contrary to the intuition
mentioned above, the use of this strong global coin does not
speed up Ben-Or’s algorithm; in fact it may do the opposite:
with probability 1/2, the algorithm does not terminate.

7 The global-coin variant of Ben-Or’s algorithm
does not terminate

We now show that, when n/3 ≤ f < n/2, the global-coin
variant of Ben-Or’s algorithm does not work under a strong
adversary. To do so, we describe how a strong adversary can
schedule the process steps and message receipts in a way
that prevents processes from ever deciding. To achieve its
goal, however, the adversary needs to be lucky in the first
round of the algorithm: as we explain below, the value of
the global coin in round 1 has to be favorable for the adver-
sary’s strategy to work; this occurs with probability 1/2. If
the adversary is lucky in round 1, then it can prevent pro-
cesses from deciding in every subsequent round irrespective
of the outcomes of the global coin in those rounds. In other
words, with probability 1/2, the adversary can prevent the
algorithm’s termination.

Theorem 2 The global-coin variant of Ben-Or’s algorithm
does not solve consensus under a strong adversary for any
f such that n/3 ≤ f < n/2.

Proof Consider a system where 2 f + 1 ≤ n ≤ 3 f . We
show that, under a strong adversary, the global-coin variant
of Ben-Or’s algorithm does not satisfy the liveness property
of consensus, namely, termination with probability 1. We
first explain the basic idea of the proof (for the special case
of n = 3 and f = 1), and then give the actual proof (for the
general case where 2 f + 1 ≤ n ≤ 3 f ).

Consider a system with n = 3 processes with initial values
0, 1, 1, respectively, and f = 1. We now outline how, with
probability 1/2, a strong adversary can prevent processes in
this system from ever deciding. The basic idea is that for
each round k ≥ 2, the adversary causes two processes to start
round k with opposite estimates, and holds the third process
in round k − 1 until it learns the value Ck of the global coin
of round k. To learn Ck , the adversary schedules the steps of
the two processes that start round k with opposite estimates
until one of them tosses the (global) coin in round k. After
it learns Ck , the adversary causes the process that was held
in round k − 1 to complete round k − 1 and start round k
with estimate 1 − Ck . So two (i.e., a majority of) processes
start round k with estimate 1 − Ck . Now the adversary has
the ability to cause a process to complete round k with either

estimate 0 or estimate 1—as the adversary chooses. To see
this, note that in round k, if a process obtains its estimate
from the global coin, it obtains Ck ; otherwise, the process
obtains the value 1 − Ck , which is the value with which a
majority of processes started round k. Thus, for every k ≥ 2,
the adversary can cause two processes to complete round k
and start round k+1 with two opposite estimates, while hold-
ing a third process in round k with the ability to control the
estimate with which this process will later complete round
k. To bootstrap this scheme, however, the adversary needs a
“lucky” initial round k = 1, as follows.

The three processes start round 1 with estimates 0, 1, 1,
respectively (their initial values). The adversary is lucky if the
outcome C1 of the global coin of round 1 is 0, which happens
with probability 1/2. If the adversary is lucky, it can cause
two processes to start round 2 with opposite estimates, while
the third process is held in round 1 and could finish this round
with either estimate 0 or 1, as the adversary can later choose
(the argument is similar to the one given above). By collating
this “lucky” round 1 with the rounds k ≥ 2 described above,
we see that, with probability 1/2, this adversary can cause
processes to never decide.

We now proceed with the actual proof of the theorem.
Let n and f be such that 2 f + 1 ≤ n ≤ 3 f . Con-
sider a system with n processes p1, p2, . . . , pn , and par-
tition these processes in three groups of f, f, n − 2 f
processes, respectively. This partition is fixed through-
out the proof, and a group will always refer to one of
these three groups in the partition. Note that a single
group has at most f processes, since n − 2 f ≤ f . More-
over, any two groups together contain at least n − f
processes, so the algorithm must make progress even if
the third group crashes or its messages are slow to arrive.
In the run that we construct, all processes of a group start
with the same initial value and execute the same steps, so
they all go through the same state transitions. We shall re-
fer to the estimate and initial value of the group to mean the
estimate or initial value held by all processes in the group;
similarly, we shall say that the group performs an action (such
as receiving certain messages) to mean that all processes of
the group perform that action.

Suppose that one group starts the consensus algorithm
with initial value 0, and the other two groups start with ini-
tial value 1.

Let C be any infinite sequence of global coin tosses that
starts with coin toss 0, i.e., C ∈ 0·{0, 1}∗; the k-th element of
C , denoted Ck , is the value of the coin toss in round k of the
algorithm. We show below that for every such C , the adver-
sary can generate an infinite run RC where no process ever
decides. In RC , the adversary’s strategy depends on the coins
in C , but only those coins that were already tossed when the
adversary takes an action. In other words, the strategy does
not depend on the value of future coins.
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To describe RC , we consider an infinite sequence of con-
secutive time periods Tk , for k ≥ 1, and describe what hap-
pens in run RC in each one of these periods. We will show
that at the end of each period Tk the following holds:

1. Two groups are at the start of round k+1; one group has
estimate 0 and the other has estimate 1; neither one has
decided.

2. The third group is still in round k waiting to receive
proposals. Furthermore, the adversary has the ability
to cause the group to later complete round k with ei-
ther estimate 0 or 1—as the adversary chooses—without
deciding.

Period T1. At the beginning of period T1, the three groups
are at the start of round 1, where one group has estimate 0,
while the other two groups have estimate 1. Let G0 be the
group with estimate 0 and G1 and G2 be the other two
groups, which have estimate 1. During period T1, the adver-
sary schedules the steps of the processes and the receipt of
messages as follows.

Groups G0 and G1 send reports for 0 and 1, respectively,
for round 1. Then each group receives those reports from
both groups, so they receive at least n − f reports (recall
that two groups combined contain at least n − f processes).
Since each group has at most f processes and f ≤ n/2, both
groups send proposals for ?.

Now group G0 receives these proposals for ? from G0 and
G1. Since every received proposal is for ?, group G0 tosses a
coin and changes its estimate to the value of the global coin
of round 1, i.e., group G0 changes its estimate to C1 = 0.
Thus, group G0 completes round 1 with estimate 0 without
deciding; in the meantime, group G1 is still waiting to receive
proposals in round 1.

Then the third group G2 proceeds as follows: (a) it sends
reports for 1, (b) it receives reports for 1 (from groups G1

and G2), and (c) since it receives at least n− f > n/2 reports
for 1, it sends proposals for 1.

Next, group G2 continues as follows: (a) it receives the
proposals for 1 sent by G2 and the proposals for ? sent by G0;
(b) it changes its estimate to 1; and (c) it completes round 1
without deciding (since it received at most f proposals for
a value other than ?). Note that group G1 is still waiting to
receive proposals in round 1.

At this point, which is the end of time period T1, the situ-
ation is as follows:

1. Two groups have completed round 1 and are at the start
of round 2; one of them has estimate 0 and the other has
estimate 1; neither one has decided. These groups are G0

and G2.
2. The third group is still in round 1 waiting to receive

proposals. Furthermore, the adversary has the ability

to cause this group to later complete round 1 with ei-
ther estimate 0 or 1—as the adversary chooses—without
deciding.
To see this, note that in the future the adversary can sched-
ule group G1 to receive the proposals for ? from groups
G0 and G1 in round 1, in which case group G1 tosses a
coin and terminates round 1 with estimate C1 = 0; or the
adversary can schedule group G1 receive the proposals
for 1 from G2 and the proposals for ? from G1, in which
case group G1 terminates round 1 with estimate 1; in ei-
ther case, group G1 terminates round 1 without deciding
(since it received at most f proposals for a value other
than ?).

This concludes the description of the initial time period
T1 of the run RC .

Period Tk for k ≥ 2. At the beginning of period Tk , the
state is the same as at the end of period Tk−1, namely:

1. Two groups are at the start of round k; one of them has
estimate 0 and the other has estimate 1; neither one has
decided.

2. The third group is still in round k − 1 waiting to receive
proposals. Furthermore, the adversary has the ability to
cause the group to later complete round k − 1 with ei-
ther estimate 0 or 1—as the adversary chooses—without
deciding.

Let G0 and G1 be the two group of processes which are
at the start of round k with estimates 0 and 1, respectively,
and G D (the subscript D is for “delayed”) denotes the third
group, which is still in round k−1, at the beginning of period
Tk , as described above.

During period Tk , the adversary schedules the steps of the
processes and the receipt of messages as follows. Groups G0

and G1 send reports for 0 and 1, respectively, for round k.
Then each group receives those reports from both groups.
Since each group has at most f processes and f ≤ n/2,
both groups send proposals for ?. Now group G0 receives
these proposals for ? from both groups, and it tosses a coin
and changes its estimate to the value of the global coin of
round k, namely Ck . Thus, group G0 completes round k with
estimate Ck without deciding; in the meantime, group G1 is
still waiting to receive proposals in round k.

The adversary now knows Ck and it uses this information
to schedule some process steps and message receipts. Specif-
ically, it first causes group G D to complete round k− 1 with
the opposite estimate 1− Ck without deciding. Then, group
G D continues its execution in round k, as follows: (a) it sends
reports for 1−Ck , (b) it receives reports for 1−Ck from G D

and from either G0 (if 1 − Ck = 0) or G1 (if 1 − Ck = 1),
(c) it sends proposals for 1 − Ck , since it received at least
n − f > n/2 reports for 1− Ck .
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Now, group G D proceeds as follows: (a) it receives the
proposals for 1− Ck from G D and the proposals for ? from
G0, (b) it changes its estimate to 1−Ck , and (c) it completes
round k without deciding (since it received at most f pro-
posals for a value other than ?). Note that group G1 is still
waiting to receive proposals in round k.

At this point, which is the end of time period Tk , the state
is as follows:

1. Two groups are at the start of round k + 1; one of them
has estimate 0, and the other has estimate 1; neither has
decided. These two groups are G0 and G D: G0 com-
pletes round k with estimate Ck , while G D completes
round k with estimate 1− Ck .

2. The third group is still in round k waiting to receive
proposals. Furthermore, the adversary has the ability
to cause this group to later complete round k with ei-
ther estimate 0 or 1—as the adversary chooses—without
deciding.
To see this, note that the adversary can schedule group G1

to receive the proposals for ? from G0 and G1 in round
k, in which case group G1 tosses a coin and terminates
round k with estimate Ck ; or the adversary can schedule
group G1 to receive the proposals for 1 − Ck from G D

and the proposals ? from G1, in which case group G1

terminates round k with estimate 1− Ck ; in either case,
group G1 terminates round k without deciding (since it
received at most f proposals for a value other than ?).

This concludes the description of time period Tk of the
run RC , for k ≥ 2.

Run RC is defined by collating the successive time periods
Tk , for k = 1, 2, . . ., that we defined above. Note that in run
RC no process ever decides.

We have just shown that in a system with n processes,
where 2 f +1 ≤ n ≤ 3 f , there is a strong adversary such that,
if f processes start with 0 and n − f processes start with 1,
then for every sequence of global coin tosses C that start with
0, the adversary can generate a run RC where no process
decides. Since the probability of such a C occurring is 1/2,
then, starting from this initial state, this adversary can cause
the algorithm to never terminate with probability at least 1/2.

��
Theorem 3 The global-coin variant of Ben-Or’s algorithm
solves consensus under a strong adversary if and only if f <

n/3.

Proof

1. If f < n/3, then the global-coin variant of Ben-Or’s
algorithm works against a strong adversary: the proof
is very similar to the one of Ben-Or’s algorithm given
in [14, Chapter 21.3] for the case that f < n/3.

2. If f ≥ n/3, then either f ≥ n/2, in which case if f
processes initially crash then correct processes never de-
cide as they cannot receive the f + 1 required proposals
in line 11; or n/3 ≤ f < n/2, in which case by Theo-
rem 2 the algorithm does not solve consensus (because
it also does not satisfy the required liveness property). ��

It is worth mentioning that the global-coin variant of Ben-
Or’s algorithm does work for f < n/2 under a weak adver-
sary. The proof is simple and similar to the one in [13].

8 Recent work in randomized consensus

Since Ben-Or’s algorithm was published in 1983 dozens
of papers have been published on randomized consensus,
in both message-passing and shared-memory systems, for
various types of adversaries, failure modes, cryptographic
assumptions, etc. Much of this work focuses on improving the
complexity of the algorithms in terms of the expected total or
individual work required, or providing related lower bounds.
In particular, recent papers by Attiya and Censor [1] and by
Aspnes [5] give the first randomized consensus algorithms
for shared-memory systems that achieve optimal O(n2) total
expected work (the algorithm in [1] uses multi-writer regis-
ters while the one in [5] uses only single-writer registers).
These papers also contain excellent surveys of the progress
made in this area since the 1990 randomized shared-mem-
ory algorithm by Bracha and Rachman [9], and they include
a comprehensive set of relevant references. A related paper
by Attiya and Censor derives lower bounds that quantify the
trade-off between the probability of termination and the to-
tal step complexity of randomized consensus algorithms [2].
These lower bounds apply to both shared-memory and mes-
sage-passing systems. Finally, a good survey of randomized
consensus protocols can be found in [4].

9 Concluding remarks

We presented the first correctness proof for Ben-Or’s pio-
neering randomized consensus for the case that f < n/2
process crashes and the adversary is strong. Even though the
algorithm is quite simple, its proof of termination with prob-
ability 1 is unexpectedly complex: it requires reasoning over
two consecutive rounds at a time, and it exposes some subtle
issues due to the power of the strong adversary in a message-
passing system. We also proved that the global-coin variant
of Ben-Or’s algorithm is incorrect under an ideal global coin,
which ensures that all processes obtain the same random bit.
This shows that, contrary to a common belief, replacing inde-
pendent coins with an ideal global coin (in a randomized con-
sensus algorithm) can sometimes be deleterious rather than
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beneficial: instead of speeding up the algorithm, the use of
an ideal global coin may actually prevent termination.

What if the global coin is not ideal, that is, what if there
is a small probability ε that different processes obtain differ-
ent random bits? Using a similar construction as the one in
Sect. 7, it is possible to show that Ben-Or’s algorithm with
such global coins has a lower bound of Ω(1/ε) expected
rounds for termination. Note that the closer the coin is to an
ideal global coin, the closer ε approaches 0, and the larger
the lower bound on the expected number of rounds for ter-
mination. In particular, if ε→0 as n→∞, for example ε ∈
Θ(1/n), then the global-coin variant of Ben-Or’s algorithm
does not terminate in a constant expected number of rounds.

Note that the common technique to replace independent
coins with a global coin to speed up randomized algo-
rithms, which does not work with Ben-Or’s algorithm, works
with the well-known consensus algorithm of Aspnes and
Herlihy [3].7 This begs the question of why that is the case.
Roughly speaking, in contrast to Ben-Or’s algorithm, in the
algorithm of [3] the value that processes can obtain determin-
istically in a round is fixed before the global coin of that round
is revealed. We call this property early binding of the deter-
ministic value of a round. With early binding, it is impossible
for the adversary to first learn the global coin of a round and
then choose a different value for processes to obtain deter-
ministically in that round. More precisely, with this property
the adversary cannot (a) first estimate the global coin of a
round by observing the outcome of the coin tosses of some
processes, and then (b) schedule other processes such that
they deterministically obtain a value that is different from
this estimate. We believe that the early binding property is
important for the use of global coins with a strong adversary.

Finally, we note that a strong adversary in message-pass-
ing systems seems to have more power than in shared-mem-
ory systems. In particular, when a process sends a value to all
processes in an asynchronous message-passing system, the
adversary can delay the receipt of some of these messages
for any finite period of time. In contrast, in a shared-mem-
ory system, once a process writes a value in a shared reg-
ister, every other process can see it. It is also worth noting
that a recent work discovered some subtle issues regarding
adversaries in systems with shared objects: this work shows
some previously overlooked relation between the power of

7 This algorithm was used to obtain the optimal randomized consensus
algorithms in [1,5] by plugging better implementations of the global
coin.

adversaries and different definitions of linearizability of the
implemented shared objects [12].
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